mperial College PyFR:An Open Source Python Framework for
ondon
High-Order CFD on Many-Core Platforms

PS R F.Witherden, A. Farrington, P. E.Vincent

Engineering and Physical Sciences

Research Council Department of Aeronautics, Imperial College London, SW7 2AZ, UK

m

NVIDIA.

Introduction Implementation Results
Theoretical studies and numerical experiments suggest that high-order methods for unstructured grids * Operations in FR reduce down to evaluating Super Accuracy 8 ;
can solve hitherto intractable fluid flow problems in the vicinity of complex geometrical configurations. * polynomials and their derivatives; . Z |
The flux reconstruction (FR) approach, developed by Huynh [1], is a simple yet efficient high-order * point-wise functions, e.g. the flux; Using PyFR we have been able to repro- Lt /
scheme that is particularly amenable to the requirements of modern hardware architectures—includ- * common fluxes at interfaces. duce .the 2.k t 1" order of ac.:curacy resu!t -“E’ 4
ing GPUs. Using the FR approach it is possible to unify various popular high-order methods such as * Majority of operations are therefore element local. descr.lbed in [3] for a non-linear two di- G 3 -
nodal discontinuous Galerkin (DG) and spectral difference schemes. In 201 | Vincent et al. identified an * Possible to cast polynomials evaluations as matrix multiplications which are extremely efficient on mensional Euler test problem. An order of 2 -
infinite range of FR schemes which are linearly stable [2]. today’s many-core computing platforms. accuracy plot for the case of k = 3 can be I
seen to the right where the order can be 0 = = = = = =
The FR Approach P)’FR clearly seen to asymptote to /. 0 300 600 900 1200 1500 1800
: : : : : , : Time
Consider the ID scalar conservation law Capable of solving the compressible Euler/Navier-Stokes equations on unstructured grids of tensor- Weak Scalablllty
du Of product elements (quads and hexes). 5
It ™ or 0 * Written in Python and utilizes a backend architecture to target multiple platforms The weak scalability of PyFR for the three ' ,
on a domain [a,b] » backends currently exist for C/OpenMP and CUDA (PyCUDA); dimensional Navier-Stokes equations on 1.0 Jﬂd'—'l;l;l'—@
. - : : . * Matrix multiplications are offloaded to BLAS. hexahedral mesh elements was evaluated o
* Divide the domain up into elements (of any length) and apply a linear transformation to these ele- £ 08
. . . . * Point-wise functions and other bespoke operations are templated using Malko: on the Emerald GPU cluster. Meshes 5
ments into standard elements in [-1,]]. Inside each standard element we store the approximate so- . 2 06
: . . . * code is generated, compiled, linked and loaded at runtime; were generated and partitioned such that .3 ™
lution at a set of kk + | points termed solution points. . . Rs
+ The FR approach then proceeds as follows allows PyFR to readily exploit platform-specific instruction sets, e.g. XOP/AVX/.... each M2090 GPU was ~90% loaded with k L 04
. Multiple nodes supported through MP] = 3 solution polynomials. The simulation | 2.8 x 10° DOF
(a) Construct a degree k Lagrange interpolating polynomial through the solution points. G relative to a sinele GPUL can be sean 0.2
(b) Evaluate the flux at each solution point and form a second degree k interpolating polynomial. * accomplished via the mpi4py library. o g. ’ 0.0 : : : : : : :
. . . _ _) e Current statistics: on the ”ght. Even with 104 GPUs—and .
(c) Evaluate the solution point polynomial at r = -1 and r = | and solve the Riemann problem re- . |) bill q ¢ g 0 16 32 48 64 80 96 112
sulting at each element interface to yield a common flux. * 4000 lines of Python; amost ¢ rée |.|on : eg.rees. c.> oree-
(d) Define a left correction function, gi(r), such that gi(-1) = | and gi(1) =0 * 800 lines of Mako/CUDA; dom—the simulation time is within 6% of 7 M2090 GPUs
e - 800 lines of Mako/C. the single GPU run.

(e) Scale this function by the jump between the common and interpolated fluxes. ‘ ’ '
(f) Add this scaled correction function to the flux polynomial. * Released under a three-clause new style’ BSD license.
(g) Repeat steps (d)—(f) for the right hand side with gr(r) = gi(-r).

(h) Take the derivative of the corrected flux polynomial at each solution point. Once suitably

Turbulent Flow over a Cylinder

Sample Code F"agments Flow at Ma = 0.2 over a cylinder was simulated at Re = 3900. With k = 4 the simulation contained ~29
million degrees of freedom and was run on a workstation with four K20c GPUs. Shown below are

e Use of SymPy’s symbolic manipulation capabilities for constructing the various polynomial operators. , T , ,
YTy Sy P P 5 POY P iso-surfaces of Q criterion coloured by velocity magnitude.

transformed this flux derivative can be fed into a time marching algorithm, e.g. RK4.

def diff vcjh correctionfn(k, eta, sym):

#define U IDX OF(upt, ele, var, nele, ldim) \

Expand shorthand forms of eta k for common schemes
5D k‘ k‘ —|— 1 etacommon = dict(dg='0", sd='k/(k+1l)', hu='(k+1)/k")
b]E5D I1 AésD Tk = O’ k _l_ 1 Y k. >t eta k = sy.S(etacommon.get(eta, eta), locals=dict(k=k))
I(a) | \l() 0 | \ 1kml, 1k, lkpl = [sy.legendre poly(m, sym) for m in [k-1, k, k+1]]
| ~§ |
Uq <5 | | | / 1 d nkLk—l + Lk—l—l # Correction function derivatives, Eq. 3.46 and 3.47 i
| @ —— U | | | | | — 9drp =— = 75 Ly diffgr = (sy.S(1)/2 * (1k + (eta_k*lkml + lkpl)/(1 + eta k))).diff() é
\: 0 ‘ _'_\; : ‘ | | : 2 dr 1+ Nk diffgl = -diffgr.subs(sym, -sym) = sl ey A
‘ ‘ ‘ ‘ ‘ . . i - / ’ - l'.. . Q:—: . - P - -') -
return diffgl, diffgr g Foiy 5 ; 1Y he s 3]
| | | L — ' | | | ' admts XN o= | o e SRS IR &'t S
| | | | : S, W-\ > i RV N7 . PO
| | | | | | Theory Implementation SN R o, RS Y TR SR "
| 0 0 o— r | 0 o o— r NN o e A TN A
B 1 5| 1 RSN NS ~ P -0
- To (&1 () - To ™ 9 . - s : . _ ' ' ;
. * Templated kernel generation. LY ’
C + : .
i() I \I() | I #ifndef PYFR IDX OF
<+ ‘ I <4 #define PYFR IDX OF SN
| | | | | SN
I | | + | | '|'/_ #define IDX OF(i, j, ldim) ((i)*(ldim) + (j)) [\
.

~ \’\;1. .

a"‘" -
LR T s S
-

<%include file='idx of.cu.mak' /> IDX OF (upt, nele*var + ele, ldim)

__global void .
negdivconf(int nupts, int neles, #endif // _PYFR_IDX OF
${dtype}* restrict tdivtconf,

const ${dtype}* restrict rcpdjac, __global__ void

|
|
|
| |
| | |
| | |
| | | int 1dt, int ldr negdivconf(int nupts, int neles,
I O @ ® | 7 | O N r { ' ') double* restrict tdivtconf,
—1 To 1 T2 1 —1 1 T2 1 int eidx = blockIdx.x * blockDim.x + threadIdx.x; const double* _restrict _ rcpdjac,
int 1dt, int ldr)
|
|

»

if (eidx < neles) {

(e) (f) { for (int uidx = 0: widx < nupts; +suid int eidx = blockIdx.x * blockDim.x + threadIdx.x;
\”/'/ T~ Ty e T e e) Acknowledgements

| | | | | % for i in rance(nvars): for (int uidx = 0; uidx < nupts; ++uidx

| | | ':'/ ! | | ':'/ o Egivtconf[ﬂ_iox_oduidx, eidx, $(i}, neles, Ldt)] *= s; * double s = repdjac(IDX OF(uidx, eidx, 10r)]; Our work is supported by the Engineering and Physical Sciences Research Council (EPSRC) and
‘ | | | e - ik e s e . ..

| | | | : | | | | |) tdivicont[u IDCOR(UTE elbc 1 neles] Lot} - NVIDIA. Conference participation aided by the Royal Commission for the Exhibition of 1851, the Im-
| | | | | | ivecont [UTDX OF uidx, cidr, o, neles, 1at)] *= 5. . o

| | | | | | | | | | GO IDCOF Uids, sics, <] netes, 160+ 5 perial College General Trust and the Old Centralians’ Trust.

1\1 — ﬁ r .) @ 9 . r) }

- ro r1 r2 - ro r1 r2

- Mako template Generated CUDA R f
8) (h) - - & ererences
\I/ \-l\‘ - N '

‘ | ' — ~ -7 ‘. AN Future Plans [I] H.T. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Gal-

| | | T/- | | T+ | | erkin methods. AIAA Paper 2007-4079.2007
| | | . : : . : . : _

| \ \ \ | T \ \ Support for simplex elements including triangles, prisms and tetrahedra. [2] P. E.Vincent, P. Castonguay, A.Jameson. A New Class of High-Order Energy Stable Flux Recon-

: : : :/ * Implement adaptive time-stepping algorithms and the viability of semi-implicit schemes. struction Schemes. Journal of Scientific Computing. 201 |

H 4,_—?, N r ll ? ? ? 1} r * An OpenCL backend to allow PyFR to target AMD S10000 and Intel Xeon Phi accelerators. [3] P. E.Vincent, P. Castonguay, A.J]ameson. Insights from von Neumann analysis of high-order flux re-

T 0 1 2 _ 0 1 2

+ Investigate means of incorporating shock capturing into FR. construction schemes. Journal of Computational Physics. 201 |

http://www.sciencedirect.com/science/journal/00219991
http://www.sciencedirect.com/science/journal/00219991

