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Introduction Implementation Results
Theoretical studies and numerical experiments suggest that high-order methods for unstructured grids * Operations in FR reduce down to evaluating Super Accuracy 8 ;
can solve hitherto intractable fluid flow problems in the vicinity of complex geometrical configurations. * polynomials and their derivatives; . Z |
The flux reconstruction (FR) approach, developed by Huynh [1], is a simple yet efficient high-order * point-wise functions, e.g. the flux; Using PyFR we have been able to repro- Lt /
scheme that is particularly amenable to the requirements of modern hardware architectures—includ- * common fluxes at interfaces. duce .the 2.k t 1" order of ac.:curacy resu!t -“E’ 4
ing GPUs. Using the FR approach it is possible to unify various popular high-order methods such as * Majority of operations are therefore element local. descr.lbed in [3] for a non-linear two di- G 3 -
nodal discontinuous Galerkin (DG) and spectral difference schemes. In 201 | Vincent et al. identified an * Possible to cast polynomials evaluations as matrix multiplications which are extremely efficient on mensional Euler test problem. An order of 2 -
infinite range of FR schemes which are linearly stable [2]. today’s many-core computing platforms. accuracy plot for the case of k = 3 can be I
seen to the right where the order can be 0 = = = = = =
The FR Approach P)’FR clearly seen to asymptote to /. 0 300 600 900 1200 1500 1800
: : : : : , : Time
Consider the ID scalar conservation law Capable of solving the compressible Euler/Navier-Stokes equations on unstructured grids of tensor- Weak Scalablllty
du  Of product elements (quads and hexes). 5
It ™ or 0 * Written in Python and utilizes a backend architecture to target multiple platforms The weak scalability of PyFR for the three ' ,
on a domain [a,b] » backends currently exist for C/OpenMP and CUDA (PyCUDA); dimensional Navier-Stokes equations on 1.0 Jﬂd'—'l;l;l'—@
. - : : . * Matrix multiplications are offloaded to BLAS. hexahedral mesh elements was evaluated o
* Divide the domain up into elements (of any length) and apply a linear transformation to these ele- £ 08
. . . . * Point-wise functions and other bespoke operations are templated using Malko: on the Emerald GPU cluster.  Meshes 5
ments into standard elements in [-1,]]. Inside each standard element we store the approximate so- . 2 06
: . . . * code is generated, compiled, linked and loaded at runtime; were generated and partitioned such that .3 ™
lution at a set of kk + | points termed solution points. . . Rs
+ The FR approach then proceeds as follows  allows PyFR to readily exploit platform-specific instruction sets, e.g. XOP/AVX/.... each M2090 GPU was ~90% loaded with k L 04
. . . . .  Multiple nodes supported through MP] = 3 solution polynomials. The simulation | 2.8 x 10° DOF
(a) Construct a degree k Lagrange interpolating polynomial through the solution points. . . . . G relative to a sinele GPUL can be sean 0.2
(b) Evaluate the flux at each solution point and form a second degree k interpolating polynomial. * accomplished via the mpi4py library. o g. ’ 0.0 : : : : : : :
. . . _ _ ) e Current statistics: on the ”ght. Even with 104 GPUs—and .
(c) Evaluate the solution point polynomial at r = -1 and r = | and solve the Riemann problem re- . | ) bill q ¢ g 0 16 32 48 64 80 96 112
sulting at each element interface to yield a common flux. * 4000 lines of Python; amost ¢ rée |.|on : eg.rees. c.> oree-
(d) Define a left correction function, gi(r), such that gi(-1) = | and gi(1) =0 * 800 lines of Mako/CUDA; dom—the simulation time is within 6% of 7 M2090 GPUs
e - 800 lines of Mako/C. the single GPU run.

(e) Scale this function by the jump between the common and interpolated fluxes. ‘ ’ '
(f) Add this scaled correction function to the flux polynomial. * Released under a three-clause new style’ BSD license.
(g) Repeat steps (d)—(f) for the right hand side with gr(r) = gi(-r).

(h) Take the derivative of the corrected flux polynomial at each solution point. Once suitably

Turbulent Flow over a Cylinder

Sample Code F"agments Flow at Ma = 0.2 over a cylinder was simulated at Re = 3900. With k = 4 the simulation contained ~29
million degrees of freedom and was run on a workstation with four K20c GPUs. Shown below are

e Use of SymPy’s symbolic manipulation capabilities for constructing the various polynomial operators. , T , ,
YTy Sy P P 5 POY P iso-surfaces of Q criterion coloured by velocity magnitude.

transformed this flux derivative can be fed into a time marching algorithm, e.g. RK4.

def diff vcjh correctionfn(k, eta, sym):

#define U IDX OF(upt, ele, var, nele, ldim) \

# Expand shorthand forms of eta k for common schemes
5D k‘ k‘ —|— 1 etacommon = dict(dg='0", sd='k/(k+1l)', hu='(k+1)/k")
b ]E5D I1 AésD Tk = O’ k _l_ 1 Y k. >t eta k = sy.S(etacommon.get(eta, eta), locals=dict(k=k))
I(a) | \l( ) 0 | \ 1kml, 1k, lkpl = [sy.legendre poly(m, sym) for m in [k-1, k, k+1]]
| ~§ |
Uq <5 | | | / 1 d nkLk—l + Lk—l—l # Correction function derivatives, Eq. 3.46 and 3.47 i
| @ —— U | | | | | — 9drp =— = 75 Ly diffgr = (sy.S(1)/2 * (1k + (eta_k*lkml + lkpl)/(1 + eta k))).diff() é
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<%include file='idx of.cu.mak' /> IDX OF (upt, nele*var + ele, ldim)

__global  void .
negdivconf(int nupts, int neles, #endif // _PYFR_IDX OF
${dtype}* restrict tdivtconf,

const ${dtype}* restrict  rcpdjac, __global__ void

|
|
|
| |
| | |
| | |
| | | int 1dt, int ldr negdivconf(int nupts, int neles,
I O @ ® | 7 | O N r { ' ' ) double*  restrict  tdivtconf,
—1 To 1 T2 1 —1 1 T2 1 int eidx = blockIdx.x * blockDim.x + threadIdx.x; const double* _restrict _ rcpdjac,
int 1dt, int ldr)
|
|

»

if (eidx < neles) {

(e) (f) { for (int uidx = 0: widx < nupts; +suid int eidx = blockIdx.x * blockDim.x + threadIdx.x;
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