Imperlal College EPSRC

\ | l |_ Engineerin ing and PhysmalSci eeeee

PyFR: Heterogeneous
Computing on Mixed
Unstructured Grids with Python

F.D. Witherden, M. Klemm, P.E. Vincent

Overview

e Motivation.
e Accelerators and Modern Hardware

* Python and PyFR.

e Summary.

Motivation

Airbus Needs — expanding the enveld

Attached & " | : il ‘ All configurations:

separated flows:

Today: CFD for design
Tomorrow. CFD for data

Non-linearity: .
cL e
r

[1] Murray Cross, Airbus, Technology Product Leader - Future Simulations (2012)

Motivation

» Objective is to advance industrial CFD
capabilities from their current RANS plateau.

 Achieved by intelligently leveraging benefits
of high-order Flux Reconstruction (FR)
methods for unstructured grids and massively-
parallel modern hardware platforms.

Modern Hardware

1 06 _
Measure
0 10° -
= Peak FLOPS
ﬁn 10# = | — Peak bandwidth ~
5 =y
Q.
T 10
=
107 -
| | | | | |
1994 1998 2002 2006 2010 2014
Year

e Intel Xeon CPUs from 1994-2014.

Accelerator Adoption

» FLOPS contributed by accelerators to the
TOP500. [HPCwire]

40%

35%

30%

25%

20%

15%

10%

5%

0% *
2006 2007 2008 2009 2010 2011 2012 2013 2014

Accelerator Adoption

» Within the top ten:

Intel Xeon Phi NVIDIA Tesla
2 of 10 2 0of 10

Increasing Heterogenelity

 Consider Stampede at TACC.

 Currently #7 on the TOP500 list.

Intel Xeon CPUs Intel Xeon Phis
2.2 PFLOP/S 7.4 PFLOP/S

Increasing Heterogenelity

e ...and it is not just the high end.

Engine & |
Memory £
'Controller

including

and DMI 10s !

e i Display, PCle
o - l Shared L3 Cache**
d RN RN HR ENE RN .

Performance Portability

» It is a challenging environment...

<ANVIDIA.
CUDA.

PYFR
 Our solution PyFR. Q P
VFR

* Written in Python.

e Uses flux reconstruction to solve the Navier-

Stokes equations on mixed unstructured grids
in 2D/3D.

 Performance portable across a variety of
hardware platforms.

PyFR

Python outer layer.

Python Outer Layer
(Hardware Independent)

® Setup

e Distributed memory parallelism
e Quter ‘for’ loop and calls to
Hardware Specific Kernels

PyFR

Need to generate hardware specific kernels.

Python Outer Layer
(Hardware Independent)

® Setup

e Distributed memory parallelism
e Outer ‘for’ loop and calls to
Hardware Specific Kernels

PyFR

* In FR two types of kernel are required.

Python Outer Layer Matrix Multiply Point-Wise
(Hardware Independent) Kernels Nonlinear Kernels

e Setup e Data e Flux functions,
e Distributed memory parallelism interpolation/ Riemann solvers
e Quter ‘for’ loop and calls to extrapolation etc.

Hardware Specific Kernels etc.

PyFR

» Matrix multiplications are quite simple.

Python Outer Layer Matrix Multiply Point-Wise
(Hardware Independent) Kernels Nonlinear Kernels

e Setup Data e Flux functions,

e Distributed memory parallelism interpolation/ Riemann solvers
e Quter ‘for’ loop and calls to extrapolation etc.
Hardware Specific Kernels etc.

Use GEMM from
vendor supplied
BLAS

PyFR

Harder for point-wise nonlinear kernels.

Python Outer Layer Matrix Multiply Point-Wise
(Hardware Independent) Kernels Nonlinear Kernels
e Setup e Data e Flux functions,
e Distributed memory parallelism interpolation/ Riemann solvers
e Quter ‘for’ loop and calls to extrapolation etc.
Hardware Specific Kernels etc.

Pass templates

Use GEMM frpm through Mako
vendor supplied derived
BLAS

templating engine

PyFR

e These can now be called.

Python Outer Layer Matrix Multiply Point-Wise
(Hardware Independent) Kernels Nonlinear Kernels

e Setup Data e Flux functions,

e Distributed memory parallelism interpolation/ Riemann solvers
e Quter ‘for’ loop and calls to extrapolation etc.
Hardware Specific Kernels etc.

C/OpenMP CUDA OpenCL
Hardware Hardware Hardware
Specific Specific Specific Use GEMM from
Kernels Kernels Kernels vendor supplied
BLAS

Pass templates
through Mako
derived
templating engine

PyFR

e These can now be called.

Python Outer Layer Matrix Multiply Point-Wise
(Hardware Independent) Kernels Nonlinear Kernels

e Setup Data e Flux functions,

e Distributed memory parallelism interpolation/ Riemann solvers
e Quter ‘for’ loop and calls to extrapolation etc.
Hardware Specific Kernels etc.

C/OpenMP CUDA OpenCL
Hardware Hardware Hardware
Specific Specific Specific Use GEMM from
Kernels Kernels Kernels vendor supplied
BLAS

Pass templates
through Mako
derived
templating engine

Mako Template

<%pyfr:kernel name='negdivconf' ndim="'2'
t="scalar fpdtype_t'
tdivtconf='inout fpdtype_t[${str(nvars)}]'
ploc='in fpdtype_t[${str(ndims)}]'
rcpdjac="in fpdtype_t'>

% for i, ex in enumerate(srcex):

tdivtconf[${i}] = -rcpdjac*tdivtconf[${i}] + ${ex};
% endfor

</%pyftr:kernel>

19

PyFR Core Tenants

 Exploit the rich Python ecosystem:

* numpy, mpi4py, PyCUDA, PyOpenClL,
pyMIC, h5py, mako

» Offload all computation:

 overhead from the interpreter < 1%.

PyFR Results |

» Benchmark problem: flow over a cylinder:

» |sosurfaces of density Ma = 0.2, Re = 3900.

21

PyFR Results I

» Single node performance.

B W9100 (OpenCL) | K40c (CUDA) [E5-2697 (C/OpenMP)

Sustained GFLOP/s

1 . 3 4

Polynomial Order

PyFR Results Il

* Multi-node heterogeneous performance on
the same mesh.

B Achieved B Lost

Polynomial Order

0 350 /700 1050 1400
Sustained GFLOP/s

Normalised runtime

PyFR Results IV

» Weak scaling on Piz Daint at CSCS for a
NACA 0021.

1.2

1.0 &

0.8 1.3 PFLOP/s ~ 50% peak

32 billion DOFs
0.6

0.4
0.2
0.0

0 400 3800 1200 1600 2000
NVIDIA K20X

Summary

* Funded and supported by

<2 (inteD)

E PS RC NVIDIA.
o AMD

* Any questions¢

* E-mail: freddie.witherden08@imperial.ac.uk

25

mailto:freddie.witherden08@imperial.ac.uk

