Heterogeneous Computing with a Homogeneous Codebase

F.D. Witherden, P.E. Vincent

Department of Aeronautics
Imperial College London
About Me

• Final year PhD candidate under the supervision of P. Vincent and S. Sherwin.

• Interested in the efficient implementation and application of flux reconstruction schemes to the compressible Navier-Stokes equations.

• Lead developer of PyFR.
Overview

• Motivation.

• Heterogeneous computing;
 • “what?”, “why?”, and “how?”.

• PyFR.

• Summary.
Motivation

Airbus Needs – expanding the envelope

Motivation

• Objective is to advance industrial CFD capabilities from their current RANS plateau.

• But…

 • unsteady simulations are more expensive;

 • so every FLOP counts!
Heterogeneous Computing

- Lots of overly broad definitions.
- Let us therefore start by defining what we mean in the context of scientific computing.
- We shall do this by code classification.
• Traditional code.
• Parallelised with MPI.
• May be hybrid using both MPI and OpenMP.
• Partially accelerated code.
• Some regions offloaded.
• Data movement overheads can be significant.
• Speedup limited by Amdahl's law.
• Fully accelerated code.
• All kernels **on-device**.
• Minimal overheads.
• CPU cores mostly idle.
Code Classifications IV

- Heterogeneous code.
- CPU and GPU perform different operations.
- Improved utilisation.
- Sensitive to cluster configuration.
- Fully heterogeneous code.

- CPU and GPU perform identical operations.

- Domain decomposed with appropriate weighting factors.
Our Focus

• We are interested in *category V* codes.

• However, they require *time to develop and expertise to maintain*.

• So..."Why should this take priority over adding new physics?"
Accelerator Adoption

- FLOPS contributed by accelerators to the TOP500. [HPCwire]
Accelerator Adoption

- Within the **top ten:**

 - Intel Xeon Phi: 2 of 10
 - NVIDIA Tesla: 3 of 10
Increasing Heterogeneity

• Consider **Stampede** at **TACC**.

• Currently **#7** on the TOP500 list.

Intel Xeon CPUs

2.2 PFLOP/S

Intel Xeon Phis

7.4 PFLOP/S
Increasing Heterogeneity

• …and it is not just the high end.
Writing A Category V Code

1. Make your code performance portable.
2. Use a consistent MPI exchange format.
3. There is no step three.
Performance Portability

- It is a challenging environment...
Performance Portability

• …so what about OpenCL?

• Supported everywhere; but optimal almost nowhere.

• Sacrifice the ability to call native libraries;

• cuBLAS, MKL, ….
Performance Portability

• OpenCL vs Native for a S/DGEMM dominated code.
PyFR

• Our solution **PyFR**.

• Written in **Python**.

• Uses flux reconstruction to solve the **Navier-Stokes** equations on mixed unstructured grids in **2D/3D**.

• **Performance portable** across a variety of hardware platforms.
PyFR

• Python outer layer.

Python Outer Layer
(Hardware Independent)

• Setup
• Distributed memory parallelism
• Outer ‘for’ loop and calls to
 Hardware Specific Kernels
• Need to generate **hardware specific kernels**.

Python Outer Layer
(Hardware Independent)

- Setup
- Distributed memory parallelism
- Outer ‘for’ loop and calls to
 Hardware Specific Kernels
PyFR

- In FR **two types** of kernel are required.

Python Outer Layer
(Hardware Independent)
- Setup
- Distributed memory parallelism
- Outer ‘for’ loop and calls to
 [Hardware Specific Kernels]

Matrix Multiply
Kernels
- Data
 interpolation/
 extrapolation
 etc.

Point-Wise
Nonlinear Kernels
- Flux functions,
 Riemann solvers
 etc.
PyFR

- Matrix multiplications are quite simple.

Python Outer Layer *(Hardware Independent)*
- Setup
- Distributed memory parallelism
- Outer ‘for’ loop and calls to *Hardware Specific Kernels*

Matrix Multiply Kernels
- Data interpolation/ extrapolation etc.

Point-Wise Nonlinear Kernels
- Flux functions, Riemann solvers etc.

Use GEMM from vendor supplied BLAS
PyFR

- Harder for point-wise nonlinear kernels.

Python Outer Layer *(Hardware Independent)*
- Setup
- Distributed memory parallelism
- Outer ‘for’ loop and calls to *Hardware Specific Kernels*

Matrix Multiply Kernels
- Data interpolation/extrapolation etc.

Point-Wise Nonlinear Kernels
- Flux functions, Riemann solvers etc.

Use GEMM from vendor supplied BLAS

Pass templates through Mako derived templating engine
PyFR

- These can now be called.

- Python Outer Layer (Hardware Independent)
 - Setup
 - Distributed memory parallelism
 - Outer ‘for’ loop and calls to Hardware Specific Kernels

- C/OpenMP Hardware Specific Kernels
- CUDA Hardware Specific Kernels
- OpenCL Hardware Specific Kernels

- Matrix Multiply Kernels
 - Data interpolation/extrapolation etc.

- Use GEMM from vendor supplied BLAS

- Point-Wise Nonlinear Kernels
 - Flux functions, Riemann solvers etc.

- Pass templates through Mako derived templating engine
PyFR

- These can now be called.

Python Outer Layer
(Hardware Independent)
- Setup
- Distributed memory parallelism
- Outer ‘for’ loop and calls to
 Hardware Specific Kernels

C/OpenMP
Hardware Specific Kernels

CUDA
Hardware Specific Kernels

OpenCL
Hardware Specific Kernels

Matrix Multiply Kernels
- Data interpolation/extrapolation etc.

Use GEMM from vendor supplied BLAS

Point-Wise Nonlinear Kernels
- Flux functions, Riemann solvers etc.

Pass templates through Mako derived templating engine
PyFR Results I

- **Single node** performance on a prism/tet mesh.
PyFR Results II

- Multi-node heterogeneous performance on the same mesh.
Summary

• Funded and supported by

EPSRC
Engineering and Physical Sciences Research Council

NVIDIA

Intel

AMD

• Any questions?

• E-mail: freddie.witherden08@imperial.ac.uk