
Heterogeneous Computing 
with a Homogeneous 

Codebase
F.D. Witherden, P.E. Vincent 

!
Department of Aeronautics 
Imperial College London

1



About Me

• Final year PhD candidate under the 
supervision of P. Vincent and S. Sherwin. 

• Interested in the efficient implementation and 
application of flux reconstruction schemes to 
the compressible Navier-Stokes equations. 

• Lead developer of PyFR.



Overview

• Motivation. 

• Heterogeneous computing; 

• “what?”, “why?”, and “how?”. 

• PyFR. 

• Summary.



Motivation

[1] Murray Cross, Airbus, Technology Product Leader - Future Simulations (2012)



Motivation

• Objective is to advance industrial CFD 
capabilities from their current RANS plateau. 

• But… 

• unsteady simulations are more expensive; 

• so every FLOP counts!



Heterogeneous Computing

• Lots of overly broad definitions. 

• Let us therefore start by defining what we 
mean in the context of scientific computing. 

• We shall do this by code classification.



• Traditional code. 

• Parallelised with MPI. 

• May be hybrid using both 
MPI and OpenMP.

Code Classifications I

t

GPU CPU



• Partially accelerated code. 

• Some regions offloaded. 

• Data movement overheads 
can be significant. 

• Speedup limited by 
Amdahl's law.

Code Classifications II

t

GPU CPU



• Fully accelerated code. 

• All kernels on-device. 

• Minimal overheads. 

• CPU cores mostly idle.

Code Classifications III

t

GPU CPU



• Heterogeneous code. 

• CPU and GPU perform 
different operations. 

• Improved utilisation. 

• Sensitive to cluster 
configuration.

Code Classifications IV

t

GPU CPU



• Fully heterogeneous code. 

• CPU and GPU perform 
identical operations. 

• Domain decomposed with 
appropriate weighting 
factors.

Code Classifications V

t

GPU CPU



Our Focus

• We are interested in category V codes. 

• However, they require time to develop and 
expertise to maintain. 

• So…“Why should this take priority over 
adding new physics?”



Accelerator Adoption
• FLOPS contributed by accelerators to the 

TOP500. [HPCwire]



Accelerator Adoption
• Within the top ten:

Intel Xeon Phi 
2 of 10

NVIDIA Tesla 
3 of 10



Increasing Heterogeneity
• Consider Stampede at TACC. 

• Currently #7 on the TOP500 list.

Intel Xeon CPUs 
2.2 PFLOP/S

Intel Xeon Phis 
7.4 PFLOP/S



Increasing Heterogeneity 
• …and it is not just the high end.



Writing A Category V Code

1. Make your code performance portable. 

2. Use a consistent MPI exchange format. 

3. There is no step three.



• It is a challenging environment…

Performance Portability



• …so what about OpenCL? 

• Supported everywhere; but 
optimal almost nowhere. 

• Sacrifice the ability to call native 
libraries; 

• cuBLAS, MKL, ….

Performance Portability



Performance Portability
• OpenCL vs Native for a S/DGEMM 

dominated code.

Intel CPU

NVIDIA GPU

0 0.25 0.5 0.75 1

Native OpenCL



PyFR
• Our solution PyFR. 

• Written in Python. 

• Uses flux reconstruction to solve the Navier-
Stokes equations on mixed unstructured grids 
in 2D/3D. 

• Performance portable across a variety of 
hardware platforms.



• Python outer layer.

PyFR

• Setup 
• Distributed memory parallelism 
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels

Python Outer Layer 
(Hardware Independent)



• Need to generate hardware specific kernels.

PyFR

Python Outer Layer 
(Hardware Independent)

• Setup 
• Distributed memory parallelism 
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels



• In FR two types of kernel are required.

PyFR

Python Outer Layer 
(Hardware Independent)

Matrix Multiply 
Kernels

Point-Wise 
Nonlinear Kernels

• Data 
interpolation/
extrapolation 
etc.

• Flux functions, 
Riemann solvers 
etc.

• Setup 
• Distributed memory parallelism 
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels



• Matrix multiplications are quite simple.

PyFR

Python Outer Layer 
(Hardware Independent)

Matrix Multiply 
Kernels

Point-Wise 
Nonlinear Kernels

• Data 
interpolation/
extrapolation 
etc.

• Flux functions, 
Riemann solvers 
etc.

Use GEMM from 
vendor supplied 

BLAS

• Setup 
• Distributed memory parallelism 
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels



• Harder for point-wise nonlinear kernels.

PyFR

Python Outer Layer 
(Hardware Independent)

Pass templates 
through Mako 

derived 
templating engine

Matrix Multiply 
Kernels

Point-Wise 
Nonlinear Kernels

• Data 
interpolation/
extrapolation 
etc.

• Flux functions, 
Riemann solvers 
etc.

Use GEMM from 
vendor supplied 

BLAS

• Setup 
• Distributed memory parallelism 
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels



• These can now be called.

PyFR

Python Outer Layer 
(Hardware Independent)

Pass templates 
through Mako 

derived 
templating engine

C/OpenMP 
Hardware 
Specific 
Kernels

CUDA 
Hardware 
Specific 
Kernels

OpenCL 
Hardware 
Specific 
Kernels

Matrix Multiply 
Kernels

Point-Wise 
Nonlinear Kernels

• Data 
interpolation/
extrapolation 
etc.

• Flux functions, 
Riemann solvers 
etc.

Use GEMM from 
vendor supplied 

BLAS

• Setup 
• Distributed memory parallelism 
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels



• These can now be called.

PyFR

Python Outer Layer 
(Hardware Independent)

Pass templates 
through Mako 

derived 
templating engine

C/OpenMP 
Hardware 
Specific 
Kernels

CUDA 
Hardware 
Specific 
Kernels

OpenCL 
Hardware 
Specific 
Kernels

Matrix Multiply 
Kernels

Point-Wise 
Nonlinear Kernels

• Data 
interpolation/
extrapolation 
etc.

• Flux functions, 
Riemann solvers 
etc.

Use GEMM from 
vendor supplied 

BLAS

• Setup 
• Distributed memory parallelism 
• Outer ‘for’ loop and calls to 

Hardware Specific Kernels



PyFR Results I
• Single node performance on a prism/tet mesh.

Su
st

ai
ne

d 
G

FL
O

P/
s

0

175

350

525

700

Polynomial Order

1 2 3 4

W9100 (OpenCL) K40c (CUDA) E5-2697 (C/OpenMP)



PyFR Results II
• Multi-node heterogeneous performance on 

the same mesh.

Po
ly

no
m

ia
l O

rd
er 1

2

3

4

Sustained GFLOP/s

0 350 700 1050 1400

Achieved Lost



Summary

• Funded and supported by 

!

!

• Any questions? 

• E-mail: freddie.witherden08@imperial.ac.uk

mailto:freddie.witherden08@imperial.ac.uk

