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otivation: Turbulent Flows
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The PyFR Framework

(O PyFR

» Uses high-order flux reconstruction (FR) to solve the

compressible Navier-Stokes equations on mixed
unstructured grids with explicit time stepping.



The PyFR Framework

 Performance portable across a range of platforms.

e Finalist for the 2016 Gordon Bell Prize.




The PyFR Framework

» Existing support for KNC based around
offloading via pyMIC.



PyFR

* Python outer layer.

Python Outer Layer
(Hardware Independent)

® Setup
e Distributed memory parallelism

e Outer ‘for’ loop and calls to hardware specific kernels



PyFR

* Need to generate hardware specific kernels.

Python Outer Layer
(Hardware Independent)

® Setup

e Distributed memory parallelism

e Outer ‘for’ loop and calls to hardware specific kernels




PyFR

* In FR two types of kernel are required.

Python Outer Layer
(Hardware Independent)

® Setup

e Distributed memory parallelism

e Outer ‘for’ loop and calls to hardware specific kernels

Matrix Multiply
Kernels

® Data
interpolation/
extrapolation
etc.

Point-Wise
Nonlinear Kernels

e Flux functions,
Riemann solvers
etc.




PyFR

» Matrix multiplications are quite simple.

Python Outer Layer
(Hardware Independent)

® Setup
e Distributed memory parallelism

e Outer ‘for’ loop and calls to hardware specific kernels
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® Data
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PyFR

* For the point-wise nonlinear kernels we use a DSL..

Python Outer Layer Matrix Multiply Point-Wise
(Hardware Independent) Kernels Nonlinear Kernels
® Setup e Data ® Flux functions,
e Distributed memory parallelism interpolation/ Riemann solvers
e Outer ‘for’ loop and calls to hardware specific kernels e?trapolatlon etc.
etc.

Pass templates
through Mako
derived
templating engine

Call GEMM



PyFR

Kernels are generated and compiled at start-up.
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kernels kernels kernels kernels Call GEMM derived

templating engine




PyFR

* Which may then be called by the outer layer.
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Matrix Multiplications in PyFR

» Multiplications are of the block-by-panel variety:
T - . _
Af C = A X
* N > — K —

 where N ~ 102> with N » (M, K) and A is constant.




GEMM in PyFR

* On x86 S/DGEMM has three kernels providers.

Dense A Dense A Sparse A Sparse A
(Small) (Large) (Small) (Large)

GiIMMIK

Libxsmm
(new)
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Initial Results




Initial Results

* PyFR 1.4.0: K40c (cuBLAS) vs KNL 7250F (MKL).
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Initial Results

» Profiling indicates point-wise kernels are the bottleneck.
* Surprising!

* Must therefore rethink our data layout and push for further
vectorisation.



Data Layout 101

* Three main layouts:
* AOS
* SOA (used by PyFR 1.4.0)

e A0SOA(k)



A0S

struct

{
float rho;
float rhou:
float E;

b data[NELES];



A0S
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Memory

» Cache and TLB friendly.

e Difficult to vectorise.



SOA

struct

{
float rho[NELES];
float rhou[NELES];
float E[NELES];

} data;



SOA

Memory

e Trivial to vectorise.

 Can put pressure on TLB and/or hardware pre-fetchers.



AOSOA(k = 2)

struct

f
float rholk];
float rhoulk];
float E[k];

b data[NELES / k];



AOSOA(k = 2)

Memory

» Can be vectorised efficiently for suitable k.

» Cache and TLB friendly.



AOSOA(k = 2)

» The Goldilocks solution
» ...albeit at the cost of messy indexing

» ...also requires coaxing for compilers to vectorise.



AOSOA(k = 2)

* Here PyFR’s DSL pays dividends.
* Iteration and indexing are hidden from kernels.

 Can therefore change data structures with ease.



AOSOA(k) Results

* PyFR 1.4.0 KNL (MKL) vs PYFR 1.5.0 KNL (MKL).
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AOSOA(k) Results

» Comparing with PyFR 1.4.0 K40c¢ (cuBLAS)
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A0SOA(k) Results

* Large performance boost.
» KNL now outperforms a K40c in the dense regime.

» Other backends improve, too, but only slightly.



Sparsity Exploitation

» Hexahedral operator matrices are sparse.

e Can therefore use GIMMIK/libxsmm. A



Sparsity Exploitation
 All with PyFR 1.5.0

 K40c (GIMMIK)

* KNL (GIMMIK)

* KNL (libxsmm)
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Summary

» Performance is promising.

* Lots of room for improvement in GIMMIK and
libxsmm.
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Start Up Time

* Normally start up time is a non-issue for PyFR.

e A few minutes for a simulation which will run for hours to
days.



Start Up Time

 Time is split roughly equally between
(i) running serial Python code;

(if) using ICC to compile run-time generated kernels.



Start Up Time

» Difficult to improve
e ...Python is virtually impossible to JIT

e ...and due to the GIL does not benefit from
multi-threading.



Start Up Time

GO0 |

 But did add a kernel cache. 3000

2000

Time /s

* Huge reduction in time for p = 4
cylinder case with GIMMIK. 1000

No cache Cache



