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Motivation: Turbulent Flows

• Interested in simulating unsteady, turbulent, flows.



The PyFR Framework

• Uses high-order flux reconstruction (FR) to solve the 
compressible Navier–Stokes equations on mixed 
unstructured grids with explicit time stepping.



The PyFR Framework

• Performance portable across a range of platforms. 

• Finalist for the 2016 Gordon Bell Prize.



The PyFR Framework

• Existing support for KNC based around 
offloading via pyMIC.



• Python outer layer.
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• Need to generate hardware specific kernels.
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• In FR two types of kernel are required.
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• Matrix multiplications are quite simple.
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• For the point-wise nonlinear kernels we use a DSL.
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• Kernels are generated and compiled at start-up.
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• Which may then be called by the outer layer.
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Matrix Multiplications in PyFR
• Multiplications are of the block-by-panel variety: 

• where N ~ 105 with N ≫ (M, K) and A is constant.

C A B

N K
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GEMM in PyFR
• On x86 S/DGEMM has three kernels providers.

Dense A 
(Small)

Dense A 
(Large)

Sparse A 
(Small)

Sparse A 
(Large)

MKL ∅ ★ ∅ ∅

GiMMiK ★ ∅ ★ ★

Libxsmm 
(new) ★★ ▲ ★★ ▲



Initial Results
• Flow over a cylinder at Re = 3,900 and Ma = 0.2. 

• Quadratically curved hexahedral mesh with NE = 118,820.



Initial Results



Initial Results
• PyFR 1.4.0: K40c (cuBLAS) vs KNL 7250F (MKL).
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Initial Results

• Profiling indicates point-wise kernels are the bottleneck. 

• Surprising! 

• Must therefore rethink our data layout and push for further 
vectorisation.



Data Layout 101

• Three main layouts: 

• AoS 

• SoA (used by PyFR 1.4.0) 

• AoSoA(k)



AoS

struct 
{ 
 float rho; 
 float rhou; 
 float E; 
} data[NELES];



• Cache and TLB friendly. 

• Difficult to vectorise.

AoS

Memory



SoA

struct 
{ 
 float rho[NELES]; 
 float rhou[NELES]; 
 float E[NELES]; 
} data;



• Trivial to vectorise. 

• Can put pressure on TLB and/or hardware pre-fetchers.

SoA

Memory



AoSoA(k = 2)

struct 
{ 
 float rho[k]; 
 float rhou[k]; 
 float E[k]; 
} data[NELES / k];



AoSoA(k = 2)

• Can be vectorised efficiently for suitable k.   

• Cache and TLB friendly.

Memory



AoSoA(k = 2)

• The Goldilocks solution 

• …albeit at the cost of messy indexing 

• …also requires coaxing for compilers to vectorise.



AoSoA(k = 2)

• Here PyFR’s DSL pays dividends. 

• Iteration and indexing are hidden from kernels. 

• Can therefore change data structures with ease.



AoSoA(k) Results
• PyFR 1.4.0 KNL (MKL) vs PyFR 1.5.0 KNL (MKL).
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AoSoA(k) Results
• Comparing with PyFR 1.4.0 K40c (cuBLAS) 
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AoSoA(k) Results

• Large performance boost. 

• KNL now outperforms a K40c in the dense regime. 

• Other backends improve, too, but only slightly.



Sparsity Exploitation

• Hexahedral operator matrices are sparse. 

• Can therefore use GiMMiK/libxsmm.



Sparsity Exploitation
• All with PyFR 1.5.0 

• K40c (GiMMiK) 

• KNL (GiMMiK) 

• KNL (libxsmm)
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Summary

• Performance is promising. 

• Lots of room for improvement in GiMMiK and 
libxsmm.
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Start Up Time

• Normally start up time is a non-issue for PyFR. 

• A few minutes for a simulation which will run for hours to 
days.



Start Up Time

• Time is split roughly equally between 

(i) running serial Python code; 

(ii) using ICC to compile run-time generated kernels.



Start Up Time

• Difficult to improve 

• …Python is virtually impossible to JIT 

• …and due to the GIL does not benefit from 
multi-threading.



Start Up Time

• But did add a kernel cache. 

• Huge reduction in time for p = 4 
cylinder case with GiMMiK.
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