
PyFR and GiMMiK on Intel KNL

F.D. Witherden1, J.S. Park2, A. Heinecke3, P. Kelly2, P.E. Vincent2 and A. Jameson1

1Department of Aeronautics & Astronautics, Stanford University
2Departments of Aeronautics and Computing, Imperial College London

3Intel Corporation

Motivation: Turbulent Flows

• Interested in simulating unsteady, turbulent, flows.

The PyFR Framework

• Uses high-order flux reconstruction (FR) to solve the
compressible Navier–Stokes equations on mixed
unstructured grids with explicit time stepping.

The PyFR Framework

• Performance portable across a range of platforms.

• Finalist for the 2016 Gordon Bell Prize.

The PyFR Framework

• Existing support for KNC based around
offloading via pyMIC.

• Python outer layer.

PyFR

Python Outer Layer
(Hardware Independent)

• Setup

• Distributed memory parallelism

• Outer ‘for’ loop and calls to hardware specific kernels

• Need to generate hardware specific kernels.

PyFR

Python Outer Layer
(Hardware Independent)

• Setup

• Distributed memory parallelism

• Outer ‘for’ loop and calls to hardware specific kernels

• In FR two types of kernel are required.

PyFR

Python Outer Layer
(Hardware Independent)

Matrix Multiply
Kernels

Point-Wise
Nonlinear Kernels

• Data
interpolation/
extrapolation
etc.

• Flux functions,
Riemann solvers
etc.

• Setup

• Distributed memory parallelism

• Outer ‘for’ loop and calls to hardware specific kernels

• Matrix multiplications are quite simple.

PyFR

Python Outer Layer
(Hardware Independent)

Matrix Multiply
Kernels

Point-Wise
Nonlinear Kernels

• Data
interpolation/
extrapolation
etc.

• Flux functions,
Riemann solvers
etc.

Call GEMM

• Setup

• Distributed memory parallelism

• Outer ‘for’ loop and calls to hardware specific kernels

• For the point-wise nonlinear kernels we use a DSL.

PyFR

Python Outer Layer
(Hardware Independent)

Pass templates
through Mako

derived
templating engine

Matrix Multiply
Kernels

Point-Wise
Nonlinear Kernels

• Data
interpolation/
extrapolation
etc.

• Flux functions,
Riemann solvers
etc.

Call GEMM

• Setup

• Distributed memory parallelism

• Outer ‘for’ loop and calls to hardware specific kernels

• Kernels are generated and compiled at start-up.

PyFR

Python Outer Layer
(Hardware Independent)

Pass templates
through Mako

derived
templating engine

CUDA
Hardware
specific
kernels

OpenCL
Hardware
specific
kernels

Matrix Multiply
Kernels

Point-Wise
Nonlinear Kernels

• Data
interpolation/
extrapolation
etc.

• Flux functions,
Riemann solvers
etc.

Call GEMM

pyMIC
Hardware
specific
kernels

• Setup

• Distributed memory parallelism

• Outer ‘for’ loop and calls to hardware specific kernels

C/OpenMP
Hardware
specific
kernels

• Which may then be called by the outer layer.

PyFR

Python Outer Layer
(Hardware Independent)

Pass templates
through Mako

derived
templating engine

CUDA
Hardware
specific
kernels

OpenCL
Hardware
specific
kernels

Matrix Multiply
Kernels

Point-Wise
Nonlinear Kernels

• Data
interpolation/
extrapolation
etc.

• Flux functions,
Riemann solvers
etc.

Call GEMM

pyMIC
Hardware
specific
kernels

• Setup

• Distributed memory parallelism

• Outer ‘for’ loop and calls to hardware specific kernels

C/OpenMP
Hardware
specific
kernels

Matrix Multiplications in PyFR
• Multiplications are of the block-by-panel variety:

• where N ~ 105 with N ≫ (M, K) and A is constant.

C A B

N K

M

GEMM in PyFR
• On x86 S/DGEMM has three kernels providers.

Dense A
(Small)

Dense A
(Large)

Sparse A
(Small)

Sparse A
(Large)

MKL ∅ ★ ∅ ∅

GiMMiK ★ ∅ ★ ★

Libxsmm
(new) ★★ ▲ ★★ ▲

Initial Results
• Flow over a cylinder at Re = 3,900 and Ma = 0.2.

• Quadratically curved hexahedral mesh with NE = 118,820.

Initial Results

Initial Results
• PyFR 1.4.0: K40c (cuBLAS) vs KNL 7250F (MKL).

p = 1

p = 2

p = 3

p = 4

Time per DOF per RK stage / ns

0 2 4 6 8 10 12

Initial Results

• Profiling indicates point-wise kernels are the bottleneck.

• Surprising!

• Must therefore rethink our data layout and push for further
vectorisation.

Data Layout 101

• Three main layouts:

• AoS

• SoA (used by PyFR 1.4.0)

• AoSoA(k)

AoS

struct
{
 float rho;
 float rhou;
 float E;
} data[NELES];

• Cache and TLB friendly.

• Difficult to vectorise.

AoS

Memory

SoA

struct
{
 float rho[NELES];
 float rhou[NELES];
 float E[NELES];
} data;

• Trivial to vectorise.

• Can put pressure on TLB and/or hardware pre-fetchers.

SoA

Memory

AoSoA(k = 2)

struct
{
 float rho[k];
 float rhou[k];
 float E[k];
} data[NELES / k];

AoSoA(k = 2)

• Can be vectorised efficiently for suitable k.

• Cache and TLB friendly.

Memory

AoSoA(k = 2)

• The Goldilocks solution

• …albeit at the cost of messy indexing

• …also requires coaxing for compilers to vectorise.

AoSoA(k = 2)

• Here PyFR’s DSL pays dividends.

• Iteration and indexing are hidden from kernels.

• Can therefore change data structures with ease.

AoSoA(k) Results
• PyFR 1.4.0 KNL (MKL) vs PyFR 1.5.0 KNL (MKL).

p = 1

p = 2

p = 3

p = 4

Time per DOF per RK stage / ns

0 2 4 6 8 10 12

AoSoA(k) Results
• Comparing with PyFR 1.4.0 K40c (cuBLAS)

p = 1

p = 2

p = 3

p = 4

Time per DOF per RK stage / ns

0 2 4 6 8 10 12

AoSoA(k) Results

• Large performance boost.

• KNL now outperforms a K40c in the dense regime.

• Other backends improve, too, but only slightly.

Sparsity Exploitation

• Hexahedral operator matrices are sparse.

• Can therefore use GiMMiK/libxsmm.

Sparsity Exploitation
• All with PyFR 1.5.0

• K40c (GiMMiK)

• KNL (GiMMiK)

• KNL (libxsmm)

p = 1

p = 2

p = 3

p = 4

Time per DOF per RK stage / ns

0 1 2 3 4 5

Summary

• Performance is promising.

• Lots of room for improvement in GiMMiK and
libxsmm.

Acknowledgements

• Air Force Office of Scientific Research for support
under grant FA9550-14-1-0186.

Backup Slides

Start Up Time

• Normally start up time is a non-issue for PyFR.

• A few minutes for a simulation which will run for hours to
days.

Start Up Time

• Time is split roughly equally between

(i) running serial Python code;

(ii) using ICC to compile run-time generated kernels.

Start Up Time

• Difficult to improve

• …Python is virtually impossible to JIT

• …and due to the GIL does not benefit from
multi-threading.

Start Up Time

• But did add a kernel cache.

• Huge reduction in time for p = 4
cylinder case with GiMMiK.

Ti
m

e
/ s

0

1000

2000

3000

4000

No cache Cache

