
On the Identification of Symmetric
Quadrature Rules for Finite Element

Methods

F.D. Witherden
Department of Aeronautics & Astronautics, Stanford University

Outline
• Presentation is based on the paper “On the identification

of symmetric quadrature rules for finite element methods”
Computers and Mathematics with Applications 69 (2015) 1232–1241

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On the identification of symmetric quadrature rules for finite
element methods
F.D. Witherden ⇤, P.E. Vincent
Department of Aeronautics, Imperial College London, SW7 2AZ, United Kingdom

a r t i c l e i n f o

Article history:

Received 5 September 2014
Received in revised form 28 January 2015
Accepted 8 March 2015
Available online 2 April 2015

Keywords:

Numerical integration
Gaussian quadrature
Finite elements
Cubature

a b s t r a c t

In this paper we describe a methodology for the identification of symmetric quadrature
rules inside of quadrilaterals, triangles, tetrahedra, prisms, pyramids, and hexahedra. The
methodology is free from manual intervention and is capable of identifying a set of rules
with a given strength and a given number of points. We also present polyquad which is an
implementation of ourmethodology. Using polyquad v1.0we proceed to derive a complete
set of symmetric rules on the aforementioned domains. All rules possess purely positive
weights and have all points inside the domain. Many of the rules appear to be new, and an
improvement over those tabulated in the literature.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

When using the finite element method to solve a system of partial differential equations it is often necessary to evaluate
surface and volume integrals inside of a standardised domain � [1–3]. A popular numerical integration technique is that of
Gaussian quadrature in which

Z

�

f (x) dx ⇡
N

pX

i

!
i

f (x
i

), (1)

where f (x) is the function to be integrated, {x
i

} are a set of N
p

points, and {!
i

} the set of associated weights. The points
and weights are said to define a quadrature rule. A rule is said to be of strength � if it is capable of exactly integrating any
polynomial of maximal degree � over �. A degree � polynomial p(x) with x 2 � can be expressed as a linear combination
of basis polynomials

p(x) =
|P� |X

i

↵
i

P �
i

(x), ↵
i

=
Z

�

p(x)P �
i

(x) dx, (2)

where P � is the set of basis polynomials of degree � whose cardinality is given by |P � |. From the linearity of integration
it therefore follows that a strength � quadrature rule is one which can exactly integrate the basis. Taking f 2 P � the task
of obtaining an N

p

point quadrature rule of strength � is hence reduced to finding a solution to a system of |P � | nonlinear
equations. This system can be seen to possess (N

D

+ 1)N
p

degrees of freedom where N

D

� 2 corresponds to the number of
spatial dimensions.

⇤ Corresponding author.
E-mail address: freddie.witherden08@imperial.ac.uk (F.D. Witherden).

http://dx.doi.org/10.1016/j.camwa.2015.03.017
0898-1221/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

Motivation

• The finite element method is one of the backbones
of modern science and engineering.

Motivation

• During the assembly process it is necessary to evaluate
integrals inside of various 2D and 3D domains.

• This is accomplished via numerical quadrature schemes.

Motivation

• We therefore seek quadrature rules
which are both accurate and efficient.

Motivation

• However, there also exists a deep connection between
symmetric quadrature rules and…

• summation-by-parts (SBP) operators,

• multivariate Lagrange interpolation.

Quadrature

• Quadrature is concerned with the numerical
evaluation of integrals.

� b

a
f(x) dx

Interpolatory Quadrature

• Most quadrature schemes are based around approximating
the function f(x) by a polynomial p(x) such that

� b

a
f(x) dx �

� b

a
p(x) dx.

Interpolatory Quadrature

• Consider sampling f(x) at a set of m + 1 abscissa
{x0, x1,…, xm} and constructing a Lagrange interpolating
polynomial as

p(x) =
m�

i=0

�i(x)f(xi), �i(xj) = �ij .

Interpolatory Quadrature
• Hence

� b

a
f(x) dx �

m�

i=0

�if(xi),

�i =

� b

a
�i(x) dx.

Interpolatory Quadrature

• If f(x) is a polynomial of degree m or below
then the quadrature is exact for any choice of
abscissa.

• The question is what to do in the case where
f(x) is of higher degree or non-polynomial.

Interpolatory Quadrature

• There are several schools of thought.

• Most prevalent is to chose the abscissa to
maximise the strength of the quadrature rule.

• Theorem. The maximum strength of an m + 1 abscissa rule
is 2m + 1 and is achieved by taking the abscissa to be the
roots of the Legendre polynomial Pm+1(x)

Interpolatory Quadrature

� 1

�1
Pi(x)Pj(x) dx = hm�ij

Gaussian Quadrature

• Proof. Let f(x) be a polynomial of degree 2m + 1 or less.

• Using the polynomial remainder theorem we have 
 
 
where q(x) and r(x) are of degree m or less.

f(x) = q(x)Pm+1(x) + r(x)

• Integrating we see that

Gaussian Quadrature

f(x) = q(x)Pm+1(x) + r(x)

� 1

�1
f(x) dx =

� 1

�1
q(x)Pm+1(x) dx +

� 1

�1
r(x) dx

• Applying quadrature we find

Gaussian Quadrature

f(x) = q(x)Pm+1(x) + r(x)

m�

i=0

�if(xi) =
m�

i=0

�i

�
q(xi)Pm+1(xi) + r(xi)

�

Gaussian Quadrature

• Since r(x) is of degree < m

� 1

�1
r(x) dx

� 1

�1
f(x) dx

m�

i=0

�if(xi)
m�

i=0

�ir(xi)=

0.00

0.25

0.50

0.75

1.00

-1.0 -0.5 0.0 0.5 1.0

• Consider a cubic
polynomial p(x)
between [-1, 1].

• The area is fixed by
p(1/√3) and p(-1/√3).

Gaussian Quadrature

Gaussian Quadrature

• Are the roots of Pm+1(x) necessarily real?

• Are they always between -1 and 1?

• Are the weights always positive?

Gaussian Quadrature

• The answer to all three is yes.

Gaussian Quadrature

• Classically, the abscissa are computed using the
Golub–Welsch algorithm at a cost of O(m2).

• Recent developments have enabled the abscissa to be
determined in O(m) time.

Cubature
• The extension of quadrature to multiple integrals is oft

referred to as cubature.

Cubature
• The extension of quadrature to multiple integrals is oft

referred to as cubature.

Cubature

• Extension to quads and hexes possible
through a tensor-product construction
of a one dimensional rule.

• With (m + 1)2 points can integrate all
monomials xiyj where i, j ≤ 2m + 1.

Cubature

• For other shapes one can employ a Duffy transform to map
them onto a quad or hex.

Cubature

• For other shapes one can employ a Duffy transform to map
them onto a quad or hex.

Z 1

�1

Z �y

�1
f(x, y) dxdy =

Z 1

�1

Z 1

�1
f(x, y)|J | dx̃dỹ

Cubature

• Such rules are functional…

• …but inefficient.

• Also suffer from an undesirable
clustering of abscissa.

Economical Cubature Rules

• Rules designed specifically for integrating functions inside
of a given element are termed economical.

• Have the potential to greatly reduce the number of
required abscissa to integrate f(x).

Economical Cubature Rules
• Can view as a non-linear least squares problem for the

unknowns {x1, ω1, …, xn, ωn} where we desire

Z

⌦
pi(x) dx =

nX

j=1

!jpi(xj) for 1 i m

Economical Cubature Rules

• Although this approach works “as is” it is
prone to failure and often results in poor
quality rules.

Improvement #1: Weights
• If the abscissa are known then the system reduces to a

linear system of dimension m × n for the weights.

• This is simply a linear least squares problem which we may
solve directly.

Z

⌦
pi(x) dx =

nX

j=1

!jpi(xj) for 1 i m

Improvement #1: Weights

• Thus, by treating the weights as dependent variables we
may halve the number of non-linear unknowns.

• Further, by using non-negative linear least squares we can

trivially enforce the requirement that ωi > 0.

Improvement #2: Symmetry

• Many shapes have symmetries.

• Desirable for these to be displayed by
the quadrature rule.

• Can accomplish this via symmetry
orbits.

v1 v2

v3

Improvement #2: Symmetry

• Many shapes have symmetries.

• Desirable for these to be displayed by
the quadrature rule.

• Can accomplish this via symmetry
orbits.

v1

v2 v3

Improvement #2: Symmetry
• For example, a triangle has six symmetries which can be

represented by three orbits.

S2(α)S1 S3(α,β)

Improvement #2: Symmetry
• For example, a triangle has six symmetries which can be

represented by three orbits.

S2(α)S1 S3(α,β)

Improvement #2: Symmetry

• Given a desired number of points n there are usually
multiple different orbital configurations.

• However, sometimes there are no solutions;

• for example a triangle with n = 44.

Improvement #2: Symmetry

• Respecting symmetry not only results in
better rules but it also substantially reduces
the number of unknowns in the non-linear
problem.

Improvement #2: Symmetry
• Moreover it also enables us to greatly reduce the number

of basis functions we need to test.

• For example, in one dimension we have 

 

 

which is satisfied by all symmetric abscissa.

Z 1

�1
x

i
dx = 0 for i odd

Improvement #2: Symmetry
• For example, consider m = 10.

Without symmetry With symmetry

Triangle 66 36

Quadrangle 66 12

Hexahedron 286 16

Prism 286 91

Pyramid 286 56

Tetrahedron 286 67

Improvement #3: Conditioning

• Using a monomial basis such that pk(x) = xiyj
results in an extremely ill-conditioned problem
that places undue weight on certain modes.

• We can fix this by changing to an orthonormal basis with

• Hence

=

nX

j=1

!j i(xj) for 1 i m

Improvement #3: Conditioning

Z

⌦
 i(x) dxc�i0

Z

⌦
 i(x) j(x) dx = �ij

Improvement #4: Constraints

• Easiest way to ensure that the points remain inside the
domain is to clamp the orbital parameters.

• Enables the use of simpler unconstrained optimisation
algorithms such as Levenberg–Marquardt.

Algorithm

• Given a shape Ω a target order m and a point count n…

• for each orbital decomposition of n…

• for i = 1..maximum attempt count…

• randomly seed the orbits…

• attempt to solve the non-linear least squares problem…

• if the residual is zero then output the rule.

Rule Selection

• Typical to stop the process after having found a
single rule with n points of degree m.

• We however keep going and can thus identify
multiple rules.

• Leads us to the concept of rule selection.

Rule Selection

• Given N rules of degree m with n abscissa we can
assess them by comparing how they perform
integrating the basis functions of degree m + 1…

• …and prefer the rule with the smallest overall error.

Implementation

• Have implemented this approach in
software package Polyquad.

• Available on GitHub and released
under the GPL.

1 1 1 1 1 1 1

2 3 4 4 5 5 6

3 6 4 8 8 6 6

4 6 8 14 11 10 14

5 7 8 14 16 15 14

6 12 12 24 28 24 34

7 15 12 35 35 31 34

New Rules

m Tri Quad Tet Pri Pyr Hex

2 3 4 4 5 5 6

3 6 4 8 8 6 6

4 6 8 14 11 10 14

5 7 8 14 16 15 14

6 12 12 24 28 24 34

7 15 12 35 35 31 34

8 16 20 46 46 47 58

9 19 20 59 60 62 58

10 25 28 81 85 83 90

11 28 28

12 33 37

13 37 37

New Rules

m Tri Quad Tet Pri Pyr Hex

8 16 20 46 46 47 58

9 19 20 59 60 62 58

10 25 28 81 85 83 90

11 28 28

12 33 37

13 37 37

14 42 48

15 49 48

16 55 60

17 60 60

18 67 72

19 73 72

New Rules

m Tri Quad Tet Pri Pyr Hex

10 25 28 81 85 83 90

11 28 28

12 33 37

13 37 37

14 42 48

15 49 48

16 55 60

17 60 60

18 67 72

19 73 72

20 79 85

New Rules

m Tri Quad Tet Pri Pyr Hex

Back To Interpolation
• Given a set of points {x1,x2,…,xn} can construct a

multivariate Lagrange interpolation polynomial as

• We therefore require V to be non-singular.

`i(x) =
nX

k=1

V�1
ik k(x), Vij = i(xj)

Unisolvency
• In 1D we simply require the points to be unique.

• Consider a quad with two points and
det(V) ≠ 0.

• Interchanging the two points will
therefore flip the sign of det(V).

Unisolvency
• In 1D we simply require the points to be unique.

• Consider a quad with two points and
det(V) ≠ 0.

• Interchanging the two points will
therefore flip the sign of det(V).

Unisolvency
• Let us now consider moving the points

continuously on separate paths.

• By the mean value theorem there is a
location wherein det(V) = 0…even
though the points are necessarily
distinct.

Unisolvency

• Remarkably, many good quadrature rules with
relevant abscissa counts suffer from this issue.

• Thus the interpolation interpretation of quadrature
breaks down in multiple dimensions.

Back To Interpolation

• In terms of the L2 norm all of the best-known
nodes do happen to correspond to the abscissa
of quadrature rules.

Conclusions

• Have described an numerical algorithm for identifying
numerical quadrature rules suitable for finite element
methods.

Future Work
• Decomposition count increases rapidly with n.

n Tri Quad Tet Pri Pyr Hex

20 — 12 3 35 34 2

40 7 36 13 260 161 6

80 — 121 50 2380 946 56

160 27 441 308 29330 6391 462

Future Work

• Approach of picking (m,n) also does not scale to high m.

• Therefore need to investigate ‘knockout’ type approaches
where the optimal n is found by starting with a high n and
then eliminating orbits of ‘least importance’.

Future Work

• Need to develop a better understanding of the complex
relationship between L2 optimal interpolation nodes and
quadrature rules…

• …and ideally a direct means of identifying such nodes.

