On the Identification of Symmetric Quadrature Rules for Finite Element Methods

F.D. Witherden Department of Aeronautics & Astronautics, Stanford University

Outline

Presentation is based on the paper "On the identification of symmetric quadrature rules for finite element methods"

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

On the identification of symmetric quadrature rules for finite element methods

F.D. Witherden*, P.E. Vincent

Department of Aeronautics, Imperial College London, SW7 2AZ, United Kingdom

• The **finite element method** is one of the **backbones** of modern science and engineering.

- During the assembly process it is necessary to evaluate integrals inside of various 2D and 3D domains.

• This is accomplished via numerical quadrature schemes.

• We therefore seek quadrature rules which are both **accurate and efficient**.

- However, there also exists a deep connection between symmetric quadrature rules and...
 - summation-by-parts (SBP) operators,
 - multivariate Lagrange interpolation.

Quadrature

Quadrature is concerned with the numerical evaluation of integrals.

 $\int f(x) \, \mathrm{d}x$

the function f(x) by a polynomial p(x) such that

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

• Most quadrature schemes are based around approximating

$$\approx \int_{a}^{b} p(x) \, \mathrm{d}x.$$

• Consider sampling f(x) at a set of **m** + 1 abscissa polynomial as

$$p(x) = \sum_{i=0}^{m} \ell_i(x)$$

$\{x_0, x_1, \ldots, x_m\}$ and constructing a Lagrange interpolating

) $f(x_i), \quad \ell_i(x_j) = \delta_{ij}.$

• Hence

 $\int_{a}^{b} f(x) \, \mathrm{d}x \approx \sum_{i=0}^{m} \omega_{i} f(x_{i}),$ $\omega_i = \int^b \ell_i(x) \, \mathrm{d}x.$ Ja

- abscissa.

• If f(x) is a polynomial of degree *m* or below then the quadrature is exact for any choice of

• The question is what to do in the case where f(x) is of higher degree or non-polynomial.

• There are several schools of thought.

 Most prevalent is to chose the abscissa to maximise the strength of the quadrature rule.

• **Theorem.** The maximum strength of an m + 1 abscissa rule is 2m + 1 and is achieved by taking the abscissa to be the roots of the Legendre polynomial $P_{m+1}(x)$

$$\int_{-1}^{1} P_i(x) P_j(x) \, \mathrm{d}x = h_m \delta_{ij}$$

- *Proof.* Let f(x) be a polynomial of degree 2m + 1 or less.
- Using the polynomial remainder theorem we have
 - f(x) = q(x)
 - where q(x) and r(x) are of degree m or less.

$$P_{m+1}(x) + r(x)$$

• Integrating we see that

$$\int_{-1}^{1} f(x) \, \mathrm{d}x = \int_{-1}^{1} q(x)$$

 $f(x) = q(x)P_{m+1}(x) + r(x)$

 $P_{m+1}(x) dx + \int_{-1}^{1} r(x) dx$

$f(x) = q(x)P_{m+1}(x) + r(x)$

Applying quadrature we find

 $\sum \omega_i f(x_i) = \sum \omega_i \left[q(x_i) P_{m+1}(x_i) + r(x_i) \right]$

• Since r(x) is of degree < m

 $\int_{-1}^{1} f(\boldsymbol{x}) d\boldsymbol{x} = \sum_{i=0}^{m} \omega_i f(\boldsymbol{x}_i)$

1.00

- Consider a cubic 0.75 polynomial p(x) between [-1, 1]. 0.50
- The area is fixed by 0.25 $p(1/\sqrt{3})$ and $p(-1/\sqrt{3})$. 0.00

- Are they always between -1 and 1?
- Are the weights always positive?

• Are the roots of $P_{m+1}(x)$ necessarily real?

• The answer to all three is yes.

- Classically, the abscissa are computed using the **Golub–Welsch algorithm** at a cost of $O(m^2)$.
- Recent developments have enabled the abscissa to be determined in O(m) time.

• The extension of quadrature to multiple integrals is oft referred to as cubature.

• The extension of quadrature to multiple integrals is oft referred to as cubature.

- Extension to quads and hexes possible through a tensor-product construction of a one dimensional rule.
- With $(m + 1)^2$ points can integrate all monomials $x^i y^j$ where $i, j \le 2m + 1$.

• For other shapes one can employ a **Duffy transform** to map them onto a quad or hex.

 For other shapes one can e them onto a quad or hex.

$$\int_{-1}^{1} \int_{-1}^{-y} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

• For other shapes one can employ a **Duffy transform** to map

$= \int_{-1}^{1} \int_{-1}^{1} \frac{f(x,y)|J| \,\mathrm{d}\tilde{x}\mathrm{d}\tilde{y}}{\int_{-1}^{1} \frac{f(x,y)|J| \,\mathrm{d}\tilde{x}\mathrm{d}\tilde{y}}}$

- Such rules are functional...
- ...but inefficient.
- Also suffer from an undesirable clustering of abscissa.

Economical Cubature Rules

- Rules designed specifically for integrating functions inside of a given element are termed **economical**.
- Have the potential to **greatly reduce** the number of required abscissa to integrate f(**x**).

Economical Cubature Rules

• Can view as a non-linear least squares problem for the unknowns { \mathbf{x}_1 , ω_1 , ..., \mathbf{x}_n , ω_n } where we desire

Economical Cubature Rules

 Although this approach works "as is" it is prone to failure and often results in poor quality rules.

Improvement #1: Weights

• If the abscissa are known then the system reduces to a linear system of dimension m × n for the weights.

$$\int_{\Omega} p_i(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \sum_{j=1}^n \omega$$

• This is simply a **linear least squares problem** which we may solve directly.

 $y_j p_i(\mathbf{x}_j) \quad \text{for } 1 \leq i \leq m$

Improvement #1: Weights

- may halve the number of non-linear unknowns.
- trivially enforce the requirement that $\omega_i > 0$.

• Thus, by treating the weights as dependent variables we

• Further, by using non-negative linear least squares we can

- Many shapes have symmetries.
- Desirable for these to be **displayed by** the quadrature rule.
- Can accomplish this via symmetry orbits.

- Many shapes have symmetries.
- Desirable for these to be displayed by the quadrature rule.
- Can accomplish this via symmetry orbits.

 For example, a triangle has s represented by three orbits.

• For example, a triangle has six symmetries which can be

 $S_2(\alpha)$

 $S_3(\alpha,\beta)$

 For example, a triangle has s represented by three orbits.

• For example, a triangle has six symmetries which can be

 $S_2(\alpha)$

 $S_3(\alpha,\beta)$

- Given a desired number of points *n* there are usually multiple different orbital configurations.
- However, sometimes there are no solutions;
 - for example a triangle with n = 44.

 Respecting symmetry not only results in problem.

better rules but it also substantially reduces the number of unknowns in the non-linear

- Moreover it also enables us to greatly reduce the number of basis functions we need to test.
- For example, in one dimension we have

- $\int_{-1}^{1} x^{i} dx = 0 \quad \text{for } i \text{ odd}$
 - nmetric abscissa.

• For example, consider m = 10.

With

Triangle

Quadrangle

Hexahedron

Prism

Pyramid

Tetrahedron

out symmetry	With symmetry
66	36
66	12
286	16
286	91
286	56
286	67

Improvement #3: Conditioning

Using a monomial basis such that p_k(x) = xⁱy^j results in an extremely ill-conditioned problem that places undue weight on certain modes.

Improvement #3: Conditioning

• We can fix this by changing to an **orthonormal basis** with

 $\psi_i(\mathbf{x})\psi_i$

• Hence

$$v_j(\mathbf{x}) \, \mathrm{d}\mathbf{x} = \delta_{ij}$$

- Easiest way to ensure that the points remain inside the domain is to clamp the orbital parameters.
- Enables the use of simpler unconstrained optimisation algorithms such as Levenberg–Marquardt.

Improvement #4: Constraints

Algorithm

- Given a shape Ω a target order m and a point count n... • for each orbital decomposition of *n*...
- - for i = 1...maximum attempt count...
 - randomly seed the orbits...
 - attempt to solve the non-linear least squares problem...
 - if the residual is zero then output the rule.

Rule Selection

- Typical to stop the process after having found a single rule with *n* points of degree *m*.
- We however keep going and can thus identify **multiple rules**.
- Leads us to the concept of rule selection.

Rule Selection

- assess them by comparing how they perform

• Given N rules of degree m with n abscissa we can integrating the basis functions of degree m + 1...

• ...and prefer the rule with the smallest overall error.

Implementation

- Have implemented this approach in software package Polyquad.
- Available on GitHub and released under the GPL.

m	Tri	Quad
1	1	1
2	3	4
3	6	4
4	6	8
5	7	8
6	12	12

Tet	Pri	Pyr	Hex
1	1	1	1
4	5	5	6
8	8	6	6
14	11	10	14
14	16	<u>15</u>	14
24	<u>28</u>	<u>24</u>	<u>34</u>

m	Tri	Quad
7	15	12
8	16	20
9	19	20
10	25	<u>28</u>
11	28	<u>28</u>
12	33	<u>37</u>

Tet	Pri	Pyr	Hex
<u>35</u>	<u>35</u>	<u>31</u>	<u>34</u>
46	<u>46</u>	<u>47</u>	58
<u>59</u>	<u>60</u>	<u>62</u>	58
81	<u>85</u>	<u>83</u>	<u>90</u>

m	Tri	Quad
13	37	<u>37</u>
14	42	<u>48</u>
15	49	<u>48</u>
16	55	60
17	60	60
18	67	<u>72</u>

Pri Tet Pyr Hex

m	Tri	Quad
15	49	<u>48</u>
16	55	60
17	60	60
18	67	<u>72</u>
19	73	<u>72</u>
20	79	<u>85</u>

Pri Tet Pyr Hex

Back To Interpolation

• Given a set of points $\{x_1, x_2, \dots, x_n\}$ can construct a multivariate Lagrange interpolation polynomial as

• We therefore require V to be **non-singular**.

 $\ell_i(\mathbf{x}) = \sum \mathcal{V}_{ik}^{-1} \Psi_k(\mathbf{x}), \quad \mathcal{V}_{ij} = \Psi_i(\mathbf{x}_j)$

- In 1D we simply require the points to be unique.
- Consider a quad with two points and $det(V) \neq 0.$
- Interchanging the two points will therefore flip the sign of det(V).

- In 1D we simply require the points to be unique.
- Consider a quad with two points and $det(V) \neq 0.$
- Interchanging the two points will therefore flip the sign of det(V).

- Let us now consider moving the points continuously on **separate paths**.
- By the mean value theorem there is a location wherein det(V) = 0...even though the points are necessarily distinct.

- Remarkably, many good quadrature rules with relevant abscissa counts suffer from this issue.
- Thus the interpolation interpretation of quadrature **breaks down in multiple dimensions**.

Back To Interpolation

 In terms of the L² norm all of the best-known nodes do happen to correspond to the abscissa of quadrature rules.

Conclusions

• Have described an numerical algorithm for identifying numerical quadrature rules suitable for finite element methods.

Future Work

• Decomposition count increases rapidly with *n*.

n	Tri	Quad	Tet	Pri	Pyr	Hex
20		12	3	35	34	2
40	7	36	13	260	161	6
80		121	50	2380	946	56
160	27	441	308	29330	6391	462

Future Work

- then eliminating orbits of 'least importance'.

• Approach of picking (*m*,*n*) also **does not scale** to high *m*.

• Therefore need to investigate 'knockout' type approaches where the optimal *n* is found by starting with a high *n* and

Future Work

- quadrature rules...

• Need to develop a better understanding of the complex relationship between L² optimal interpolation nodes and

• ...and ideally a **direct means** of identifying such nodes.