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Motivation

 The finite element method is one of the backbones
of modern science and engineering.



Motivation

* During the assembly process it is necessary to evaluate
integrals inside of various 2D and 3D domains.

* This is accomplished via numerical quadrature schemes.



Motivation

» We therefore seek quadrature rules
which are both accurate and efficient.



Motivation

* However, there also exists a deep connection between
symmetric quadrature rules and...

* summation-by-parts (SBP) operators,

» multivariate Lagrange interpolation.



Quadrature

* Quadrature is concerned with the numerical
evaluation of integrals.
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Interpolatory Quadrature

* Most quadrature schemes are based around approximating
the function f(x) by a polynomial p(x) such that

/ab f(x)dr = /&bp(a:) dax.



Interpolatory Quadrature

 Consider sampling f(x) at a set of m + 1 abscissa
{Xo0, X1,..., Xm} and constructing a Lagrange interpolating
polynomial as

T

p(x) = Zfz‘(@f@z‘)» li(xj) = 045

1=0



Interpolatory Quadrature

e Hence

/ab f(z)dr ~ f:wq;f(%),

b



Interpolatory Quadrature

e If f(x) is a polynomial of degree m or below
then the quadrature is exact for any choice of
abscissa.

* The question is what to do in the case where
f(x) is of higher degree or non-polynomial.



Interpolatory Quadrature

* There are several schools of thought.

* Most prevalent is to chose the abscissa to
maximise the strength of the quadrature rule.



Interpolatory Quadrature

e Theorem. The maximum strength of an m + 1 abscissa rule
is 2m + 1 and is achieved by taking the abscissa to be the
roots of the Legendre polynomial Pr1(x)

/ o i(2)Pj(x) dz = humdj;

—1



Gaussian Quadrature

* Proof. Let f(x) be a polynomial of degree 2m + 1 or less.

* Using the polynomial remainder theorem we have

f(z) = q(x)Prny1(z) + r(z)

where g(x) and r(x) are of degree m or less.



Gaussian Quadrature

f(z) = q(z)Pry1(z) + r(z)

* Integrating we see that

/11 f(z)dx = /11 q(x) Pryy1(r) do + /11 r(r)dx




Gaussian Quadrature

f(x) = q(x)Prya(z) + r(z)

* Applying quadrature we find

szf T;) = Z { (23) Prny1 (i) + 7“(33@)}



Gaussian Quadrature

» Since r(x) is of degree < m

|t = 3w



Gaussian Quadrature

e Consider a cubic
polynomial p(x)
between [-1, 1].

* The area is fixed by
p(1/\/3) and p(—1/\/3).
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Gaussian Quadrature

* Are the roots of Pm41(x) necessarily real?
* Are they always between -1 and 17

* Are the weights always positive?



Gaussian Quadrature

* The answer to all three is yes.



Gaussian Quadrature

» Classically, the abscissa are computed using the
Golub-Welsch algorithm at a cost of O(m?).

» Recent developments have enabled the abscissa to be
determined in O(m) time.



Cubature

* The extension of quadrature to multiple integrals is oft
referred to as cubature.




Cubature

* The extension of quadrature to multiple integrals is oft

referred to as cubature.
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Cubature

» Extension to quads and hexes possible
through a tensor-product construction
of a one dimensional rule.

» With (m + 1) points can integrate all
monomials x'y) where i, j <2m + 1.




Cubature

* For other shapes one can employ a Duffy transform to map
them onto a quad or hex.




Cubature

* For other shapes one can employ a Duffy transform to map
them onto a quad or hex.

/11 /_1yf(x, y) dedy = /11 /11]5(% y)|J| dzdg




Cubature

e Such rules are functional...
e ...but inefficient.

e Also suffer from an undesirable
clustering of abscissa.




Fconomical Cubature Rules

 Rules designed specifically for integrating functions inside
of a given element are termed economical.

* Have the potential to greatly reduce the number of
required abscissa to integrate f(x).



Fconomical Cubature Rules

 Can view as a non-linear least squares problem for the

unknowns {x1, W1, ..., Xn, Wn} Where we desire

/pz'(X> dx = g ij@'(Xj) for 1 <1< m
() .
7=1



Fconomical Cubature Rules

* Although this approach works “as is” it is
prone to failure and often results in poor
quality rules.



Improvement #1: Weights

* If the abscissa are known then the system reduces to a
linear system of dimension m x n for the weights.

/ p;i(X)dx = E wipi(x;) for1<i<m
O .
7=1

* This is simply a linear least squares problem which we may
solve directly.



Improvement #1: Weights

 Thus, by treating the weights as dependent variables we
may halve the number of non-linear unknowns.

» Further, by using non-negative linear least squares we can

trivially enforce the requirement that w; > 0.



Improvement #2: Symmetry

* Many shapes have symmetries. V3

» Desirable for these to be displayed by

the quadrature rule.
* Can accomplish this via symmetry \

: Vi
orbits.



Improvement #2: Symmetry

* Many shapes have symmetries. v

» Desirable for these to be displayed by

the quadrature rule.
* Can accomplish this via symmetry \

. V2
orbits.



Improvement #2: Symmetry

* For example, a triangle has six symmetries which can be
represented by three orbits.

S2(Q)




Improvement #2: Symmetry

* For example, a triangle has six symmetries which can be
represented by three orbits.

S2(Q)




Improvement #2: Symmetry

* Given a desired number of points n there are usually
multiple different orbital configurations.

 However, sometimes there are no solutions;

» for example a triangle with n = 44.



Improvement #2: Symmetry

» Respecting symmetry not only results in
better rules but it also substantially reduces
the number of unknowns in the non-linear
problem.



Improvement #2: Symmetry

* Moreover it also enables us to greatly reduce the number
of basis functions we need to test.

* For example, in one dimension we have

1
/ r'dr =0 for 7 odd
—1

which is satisfied by all symmetric abscissa.



Improvement #2: Symmetry

* For example, consider m = 10.

Without symmetry With symmetry
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Improvement #3: Conditioning

 Using a monomial basis such that pi(x) = x'y/
results in an extremely ill-conditioned problem
that places undue weight on certain modes.



Improvement #3: Conditioning

* We can fix this by changing to an orthonormal basis with

/Q i(x)1;(x) dx = 9y

e Hence

[ it =S wtitxg) for1<i<m
j=1



Improvement #4: Constraints

» Easiest way to ensure that the points remain inside the
domain is to clamp the orbital parameters.

* Enables the use of simpler unconstrained optimisation
algorithms such as Levenberg—Marquardt.



Algorithm

* Given a shape (2 a target order m and a point count n...

e for each orbital decomposition of n...
 for i =1..maximum attempt count...
» randomly seed the orbits...
» attempt to solve the non-linear least squares problem...

* if the residual is zero then output the rule.



Rule Selection

» Typical to stop the process after having found a
single rule with n points of degree m.

* We however keep going and can thus identify
multiple rules.

* Leads us to the concept of rule selection.



Rule Selection

* Given N rules of degree m with n abscissa we can
assess them by comparing how they perform
integrating the basis functions of degree m + 1...

» ...and prefer the rule with the smallest overall error.



Implementation

* Have implemented this approach in
software package Polyquad.

* Available on GitHub and released
under the GPL.




New Rules




New Rules




New Rules




New Rules




Back To Interpolation

 Given a set of points {x1,X2,...,Xn} can construct a

multivariate Lagrange interpolation polynomial as
T
—1
Li(x) =) ViU, (x), Vi =¥(x;)
k=1

* We therefore require V to be non-singular.



Unisolvency

* In 1D we simply require the points to be unique.

 Consider a quad with two points and

det(V) £ 0.

* Interchanging the two points will
therefore flip the sign of det(V).



Unisolvency

* In 1D we simply require the points to be unique.

 Consider a quad with two points and

det(V) £ 0.

* Interchanging the two points will
therefore flip the sign of det(V).



Unisolvency

* Let us now consider moving the points
continuously on separate paths.

* By the mean value theorem there is a
location wherein det(V) = 0...even
though the points are necessarily
distinct.




Unisolvency

» Remarkably, many good quadrature rules with
relevant abscissa counts suffer from this issue.

» Thus the interpolation interpretation of quadrature
breaks down in multiple dimensions.



Back To Interpolation

* In terms of the L“ norm all of the best-known
nodes do happen to correspond to the abscissa
of quadrature rules.



Conclusions

» Have described an numerical algorithm for identifying
numerical quadrature rules suitable for finite element
methods.



Future Work

» Decomposition count increases rapidly with n.




Future Work

» Approach of picking (m,n) also does not scale to high m.

» Therefore need to investigate ‘knockout’ type approaches
where the optimal n is found by starting with a high n and
then eliminating orbits of ‘least importance’.



Future Work

* Need to develop a better understanding of the complex
relationship between L“ optimal interpolation nodes and
quadrature rules...

e ...and ideally a direct means of identifying such nodes.



