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Motivation

• LES is expensive… 

• …really expensive.



Computer Arithmetic
• Binary floating point following IEEE 754 

•  x = sign · mantissa · 2exponent

1 8 23

1 11 52

sign exponent mantissa

binary32

binary64



Computer Arithmetic

• Complicated! 

• If you think you understand 
floating point arithmetic—you 
don’t!



Table 1. Theoretical peak memory bandwidth and FLOP/s for a variety of modern
hardware platforms. Boosting and throttling technologies may result in a deviation
from the theoretical peaks depending on the specifics of the workload.

TFLOP/s

Model GB/s Single Double Ratio

AMD Radeon R9 Nano 512 8.19 0.51 16
AMD FirePro W9100 320 5.24 2.62 2

Intel Xeon E5-2699 v4 77 1.55 0.77 2
Intel Xeon Phi 7120A 352 2.42 1.21 2

NVIDIA Tesa K40c 288 4.29 1.43 3
NVIDIA Tesa M40 288 7.00 0.21 32

For codes operating on unstructured grids it is necessary to store additional data

describing the connectivity of the grid. This data usually takes the form of either

pointers or integral array o↵sets. With few exceptions this size of the data is

una↵ected by the number representation. Hence, the reduction in memory follows

from Amdahl’s law

R =
1

(1 � p) + p/2
, (1)

where R is the reduction in memory and p the proportion of application memory

assigned to double precision variables.

Memory bandwidth. On today’s hardware many of the popular numerical dis-

cretisations for unsteady problems are limited not by compute but by memory

bandwidth [8]. In the general case a transition to single precision may yield a perfor-

mance improvement of up to two times; although, as with the memory requirements,

it is important to also account for non-numerical data. For an unstructured code this

reduces the potential speedup somewhat.

An additional subtlety arises on GPU platforms that can—under a specific set

of circumstances—improve the performance of bandwidth limited code by more

than a factor of two. Unlike traditional CPU architectures, which define a fixed set
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Why Number Precision?



Potential Speedups
• If a code region is limited by… 

• FLOPs = 2× to 32× 

• Memory bandwidth = 2x 

• Disk I/O = 2x 

• Latency (memory, disk, network, …) = 1x



The Status Quo

• Extensive research in bars indicates 
that, if given the choice between a 
single and a double measure, the 
double wins every time. 

• CFD codes are no exception.



Do We Need Double Precision?

• Very little research in the CFD space. 

• Results mostly limited to steady state computations where 
double precision does appear to be necessary.



Methodology

• Rerun several of our previous published test 
cases using single precision arithmetic. 

• Compare the results and assess the performance.



Experiments

• Using PyFR we have evaluated several 
unsteady viscous test cases. 

• Taylor–Green vortices. 

• Flow over a circular cylinder. 

• Flow over a NACA 0021.



• Standard test case for DG.

3D Taylor–Green Vortex



• Four structured grids with roughly constant DOF count.

3D Taylor–Green Vortex
Table 5. Solver and mesh configurations for the Taylor–Green vortex experiment.
The total number of elements and solution points in the simulations are indicated by
NE and

P

Nu, respectively.

Memory / GiB

Order NE
P

Nu Single Double

} = 2 863 2583 6.4 12.2
} = 3 643 2563 5.4 10.3
} = 4 523 2603 5.1 9.8
} = 5 433 2583 4.6 9.0

The case is run until t = 20tc where time is normalised according to tc = L/v0 '

8.45. Although the Taylor–Green vortex does not have an analytical solution there is

spectral DNS data available due to van Rees et al. [22]. Two salient metrics are the

temporal evolution of the domain-integrated kinetic energy and enstrophy, defined

as

Êk(t) =
1
|⌦|

1
⇢0v2

0

Z

⌦

1
2
⇢(x, t)kv(x, t)k2 d3x, (39)
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0

Z

⌦

1
2
⇢(x, t)k!(x, t)k2 d3x, (40)

where |⌦| = (2⇡)3 is the volume of the domain and ! =r ⇥ v is the vorticity. We

note here that as the flow is e↵ectively incompressible—hence r · v = 0—that the

enstrophy is related to the decay rate of the kinetic energy via

Ê = �2
µ

⇢0
@t Êk. (41)

Denoting the spectral DNS quantities as ⇤? we can introduce the following two
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• Consider kinetic 
energy decay rate. 

• Compare with van 
Rees et al. 

• No difference between 
single and double.

3D Taylor–Green Vortex
} = 2 } = 3

} = 4 } = 5

0.0

0.5

1.0

0.0

0.5

1.0

0 5 10 15 20 0 5 10 15 20

t/tc

�
@ t

c
Ê
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3D Taylor–Green Vortex
• Performance on a two NVIDIA K40c’s with GiMMiK.
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Figure 5. Rate of kinetic energy decay for the Taylor–Green test simulation com-
pared against the spectral DNS data of van Rees et al. [22].

Table 7. Performance for the Taylor–Green vortex with PyFR on two NVIDIA
K40c GPUs using GiMMiK. The wall-clock time per solution point per RK stage is
denoted by tw/

P

Nu.

tw/
P

Nu / 10�9s GFLOP / s

Order GFLOP / stage Single Double Single Double Speedup

} = 2 1.84 ⇥ 101 4.8 8.9 222.1 120.5 1.84
} = 3 1.82 ⇥ 101 4.2 7.9 252.3 134.6 1.88
} = 4 1.92 ⇥ 101 4.4 8.6 255.9 129.7 1.97
} = 5 1.96 ⇥ 101 4.5 13.1 250.8 87.0 2.88
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Flow Over a Cylinder



Flow Over a Cylinder
• Cylinder at Re = 3900, and Ma = 0.2 with p = 4. 

• Mixed prism/tet grid of span πD.



Flow Over a Cylinder

• Pressure coefficient 
on the surface. 

• Compare with 
Lehmkuhl et al. -1.0
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Flow Over a Cylinder

• Performance on a single NVIDIA K40c with GiMMiK. 

• Tet operator matrices are small and prisms sparse. 

• Overall speedup of ~1.6. 

• Simulation results in heavy indirection; thus experiences 
less of an improvement from single precision.



NACA 0021

• Flow over a NACA 0021 at 60 degree AoA. 

• Re = 270,000 and Ma = 0.1. 

• Compare with experimental results of Swalwell.



NACA 0021

• 206,528 hexahedral elements. 

• Span is four times the chord. 

• Fourth order solution polynomials 
with full anti-aliasing.



NACA 0021
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NACA 0021

• Performance on 16 NVIDIA K80’s (32 GPUs). 

• All operators are dense. 

• Near the limit of strong scaling. 

• Overall speedup of ~1.8.



Remarks and Closing Thoughts

For LES single precision is sufficient.
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