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Abstract

We report on the numerical modelling of a double pendulum using C++.
The system was found to be very sensitive to both the initial starting condi-
tions and the choice of solver.

1 Introduction
A double pendulum, which consists of one pendulum suspended from another, is a
potentially chaotic system. This means that for certain parameter ranges a slight
change in one of the initial starting conditions can have a dramatic effect on the
subsequent motion of the pendulum. As a result the motion of a double pendulum
extremely difficult to predict — exhibiting seemingly random or chaotic behavior.

The motion of a double pendulum can be modeled using a system of ordinary
differential equations. However, since these equations have no analytical solution
they must instead be approximated numerically. This can be done using a computer
with an appropriately written program.

2 Theory
As stated in the introduction a double pendulum is one pendulum suspended from
another. This can be seen in Figure 1. Assuming that the system is un-damped
and that the connecting rod is massless the following equations of motion can be
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Figure 1: Diagram of a double pendulum.

derived [2, 3]

θ̇1 = ω1

ω̇1 =
m2l1ω2

1 sin∆cos∆+m2gsinθ2 cos∆+m2l2ω2
2 sin∆−Mgsinθ1

Ml1−m2l1 cos2 ∆

θ̇2 = ω2

ω̇2 =
−m2l2ω2

2 sin∆cos∆+M(gsinθ1 cos∆− l1ω2
1 sin∆−gsinθ2)

Ml2−m2l2 cos2 ∆

(1)

where θ1,2 is the angle of the bob from the vertical, ω1,2 is the angular momentum
of the bob, l1,2 is the length of the connecting rod, m1,2 is the mass of the bob,
∆ = θ2−θ1, M = m1 +m2 and g is acceleration due to gravity.

In order to simulate a double pendulum it is necessary to solve these equations
in terms of t. Since there exists no analytical solution it must instead be done
numerically — of which there exist several solvers. Considering several methods
allows for firstly verification (they should give similar solutions to the same equa-
tions) and secondly allows for a comparison to be made between methods. The
most simple of these is Euler’s method which states that given a function y(t) that

y(t +∆t) = y(t)+ ẏ(t)∆t (2)

where ∆t is a small time increment and ẏ(t) is the derivative of y(t) with respect to
time at a time, t. Therefore given the initial starting conditions at y(0) it is possible
to calculate y(t). This is easy to generalise in terms of θ1,2(t) and ω1,2(t), thus
making it possible to model a double pendulum numerically.
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Figure 2: Class inheritance hierarchy for the double pendulum system.
DoublePendulumEuler makes use of Euler’s method for solving the equations
of motion while DoublePendulumRK4 uses a 4th order Runge-Kutta method.

A more advanced method for solving ordinary differential equations is the
Runge-Kutta method [4]. While Euler’s method just computes the derivative
once at y(t) Runge-Kutta methods compute the derivative multiple times between
y(t) and y(t + ∆t), using the previous derivative as a starting point. The various
derivatives are then combined in a weighted fashion to compute y(t + ∆t). The
most common variant is a fourth order Runge-Kutta method which computes
the derivative a total of four times for a step ∆t. A complete description of the
algorithm can be found in [4].

3 Implementation In C++
In order to model the double pendulum system object-orientated C++ was used. An
abstract base class, DoublePendulum, was used to model the core functionality of a
double pendulum system. This contained functions for computing the numerical
derivative at a time t and advancing the simulation forward in steps of ∆t, while
delegating the specific task of solving the equations of motion to subclasses. This
can be seen in Figure 2. Doing so both maximised code reuse and made it easy to
implement additional solvers.

A graphical fontend was then written around this. By allowing for an arbitrary
number of pendulums — each with different solvers/starting conditions — to
be added to a scene it facilitated a visual comparison. A screen capture of the
application can be seen in Figure 3.
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Figure 3: A screen capture of the graphical frontend showing two double pendulums
mid-swing.

4 Results, Errors and Discussion
It is possible to investigate the chaotic nature of the system by looking at how
a small change to the starting conditions affects the subsequent motion of the
pendulum. The effect of θ1init and θ2init on the value of θ2 after 20.0 seconds can be
seen in Figure 4. Areas which are consistently shaded are predictable — a small
change to θ1init or θ2init having little effect on the subsequent motion — while those
that are noisy are chaotic.

In order for the results above to be meaningful it is first necessary demonstrate
that the algorithms and solvers have been correctly implemented in the program.
There are several ways of doing this that do not rely on the assumption that one
method is more accurate than another. Firstly, looking at Equation 1 it is clear that

lim
m2→0

θ̇1 = ω̇1

lim
m2→0

ω̇1 =
−Mgsinθ1

Ml1
=
−gsinθ1

l1

(3)

which are the equations of motion for a single pendulum. For θ1� 1 it is possible
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Figure 4: How the value of θ2 after 20.0 seconds is affected by the initial values
of θ1,2. If θ2 is greater than 0 then a white pixel is plotted while if it is less than
zero then black is used. Initial conditions: ω1 = ω2 = 0, l1 = 1.0m, l2 = 0.4m,
m1 = 1.0kg and m2 = 0.25kg.

to solve the equations analytically by using the small angle approximation giving
[5]

θ1(t) = θ1init cos

(
t

√
l1
g

)
(4)

Hence for a small starting angle θ1 the motion of the upper-bob should be the
same as that predicted by Equation 4. This can be seen in Figure 5. Therefore the
program does accurately simulate a single pendulum as m2 tends to zero.

Another method is to see how the total mechanical energy of the system varies
over time. Since gravity is a conservative force and the system is un-damped it
should remain constant. A graph of this can be seen in Figure 6. Looking at the
graph it is clear that Euler’s method is not suitable unless a small ∆t is used while
the Runge-Kutta method is significantly better at maintaining the total mechanical
energy.
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Figure 5: A plot comparing θ against time for a double pendulum with an arbitrary
small m2 and a small-angle approximation. Initial conditions: θ1 = 0.05, ω1 = 0,
l1 = 3.0m and m1 = 1.0kg.
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Figure 6: How the total mechanical energy of the system varies over time for
various solvers and time steps. Initial conditions: θ1 = θ2 = 0.5, ω1 = ω2 = 0,
l1 = 1.0m, l2 = 0.4m, m1 = 1.0kg and m2 = 0.25kg.
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5 Conclusion
The objective was to simulate a double pendulum system using C++ and to investi-
gate both its chaotic behavior and how the simulation is affected by the choice of
numerical solver. The system was found to be chaotic in certain parameter ranges,
but not universally. The choice of solver and time-step was found to have a big
effect on the motion of the system: Euler’s method proved to be unsuitable unless
a small time-step was used. Fourth-order Runge-Kutta method fared much better
— allowing for a much larger time-step to be used than would be possible with
Euler’s method.

Although with a suitably small time-step the program has the potential to be
extremely accurate it is inevitably limited by the machine precision. There is also
a significant performance penalty associated with smaller step sizes. One potential
solution to this is to investigative adaptive step-size Runge-Kutta methods, which
use a non-constant step size. By changing the step size dynamically the number of
calculations can be reduced, resulting in better performance while obtaining the
same accuracy.
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A Program Listing
Since the program itself totals in at over 1,000 lines of C++ code only the core
classes, those which simulate the double pendulum, have been attached. The file
names correspond those in Figure 2.

doublependulum.h
1 #ifndef DOUBLEPENDULUM_H

2 #define DOUBLEPENDULUM_H

3
4 /**
5 * Models the state of a pendulum. This is provided to make it easier to

6 * create a DoublePendulum class instance.

7 */

8 struct Pendulum

9 {

10 Pendulum()

11 : theta(0.0), omega(0.0), l(0.0), m(0.0)

12 {

13 }

14
15 Pendulum(double _theta, double _omega, double _l, double _m)

16 : theta(_theta), omega(_omega), l(_l), m(_m)

17 {

18 }

19
20 /**
21 * The angle in radians the pendulum makes with the vertical.

22 */

23 double theta;

24
25 /**
26 * The angular momentum of the pendulum.

27 */

28 double omega;

29
30 /**
31 * The length of the connecting rod between the pendulum and the pivot.

32 */

33 double l;

34
35 /**
36 * The mass of the bob on the end of the pendulum.

37 */

38 double m;
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39 };

40
41 class DoublePendulum

42 {

43 public:

44 DoublePendulum(const Pendulum& upper, const Pendulum& lower,

45 double dt=0.005, double g=9.81);

46
47 virtual ~DoublePendulum();

48
49 /**
50 * Advances the equation in steps of m_dt until newTime is reached.

51 *
52 * @param newTime The time to advance the system to. This must be >=

53 * time().

54 */

55 void update(double newTime);

56
57 double theta1()

58 {

59 return m_theta1;

60 }

61
62 double omega1()

63 {

64 return m_omega1;

65 }

66
67 double m1()

68 {

69 return m_m1;

70 }

71
72 double l1()

73 {

74 return m_l1;

75 }

76
77 double theta2()

78 {

79 return m_theta2;

80 }

81
82 double omega2()

83 {
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84 return m_omega2;

85 }

86
87 double m2()

88 {

89 return m_m2;

90 }

91
92 double l2()

93 {

94 return m_l2;

95 }

96
97 double time()

98 {

99 return m_time;

100 }

101
102 /**
103 * Returns a string representation of the solver method used. This can be

104 * used to determine which solver is being used by a given instance.

105 *
106 * @return The name of the solver used by the current DoublePendulum

107 * instance.

108 */

109 virtual const char *solverMethod() = 0;

110
111 protected:

112 /**
113 * The list of motion ODE which must be solved in order to numerically

114 * evaluate the double pendulum system with respect to time.

115 */

116 enum

117 {

118 THETA_1,

119 OMEGA_1,

120 THETA_2,

121 OMEGA_2,

122 NUM_EQNS

123 };

124
125 /**
126 * Given theta and omega for the upper- and lower-bobs this method computes

127 * the numeric derivatives of each one.

128 *
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129 * The format for yin is: { THETA_1, OMEGA_1, THETA_2, OMEGA_2 }.

130 *
131 * @param yin The current values of theta and omega for the system. (As

132 * all other values are constant these do not need to be

133 * passed.)

134 * @param dydx The array to place the computed derivatives in. This has

135 * exactly the same format as yin.

136 */

137 void derivs(const double *yin, double *dydx);

138
139 /**
140 * Called to solve the equations of motion for the system by advancing

141 * theta and omega by one step (this->m_dt).

142 *
143 * Since there are various ways of doing this the exact implementation is

144 * left up to sub-classes.

145 *
146 * @param yin The current values of theta and omega for the system. The

147 * format is the same as that taken by the derivs method.

148 */

149 virtual void solveODEs(const double *yin, double *yout) = 0;

150
151 /**
152 * Angle of the first pendulum from the vertical (in rad).

153 */

154 double m_theta1;

155
156 /**
157 * Angular acceleration of the first pendulum (dÎž/dt).

158 */

159 double m_omega1;

160
161 /**
162 * Length of the first pendulum (in m).

163 */

164 const double m_l1;

165
166 /**
167 * Mass of the first pendulum (in kg).

168 */

169 const double m_m1;

170
171 /**
172 * Angle of the second pendulum from the vertical (in rad).

173 */
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174 double m_theta2;

175
176 /**
177 * Angular acceleration of the second pendulum (dÎž/dt).

178 */

179 double m_omega2;

180
181 /**
182 * Length of the second pendulum (in m).

183 */

184 const double m_l2;

185
186 /**
187 * Mass of the second pendulum (in m).

188 */

189 const double m_m2;

190
191 /**
192 * Step size to take when numerically solving the ODE.

193 */

194 const double m_dt;

195
196 /**
197 * Acceleration due to gravity (usually 9.81 ms^-2).

198 */

199 const double m_g;

200
201 /**
202 * Current time for which omega and theta are evaluated for.

203 */

204 double m_time;

205 };

206
207 #endif // DOUBLEPENDULUM_H

doublependulum.cpp
1 #include "doublependulum.h"

2
3 #include <cmath>

4 #include <cassert>

5
6 DoublePendulum::DoublePendulum(const Pendulum& upper, const Pendulum& lower,

7 double dt, double g) :

8 m_theta1(upper.theta),

9 m_omega1(upper.omega),
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10 m_l1(upper.l), m_m1(upper.m),

11 m_theta2(lower.theta),

12 m_omega2(lower.omega),

13 m_l2(lower.l), m_m2(lower.m),

14 m_dt(dt), m_g(g), m_time(0.0)

15 {

16 }

17
18 DoublePendulum::~DoublePendulum()

19 {

20 }

21
22 void DoublePendulum::update(double newTime)

23 {

24 assert(newTime >= m_time);

25
26 do

27 {

28 const double yin[NUM_EQNS] = { m_theta1, m_omega1, m_theta2, m_omega2 };

29 double yout[NUM_EQNS];

30
31 solveODEs(yin, yout);

32
33 m_theta1 = yout[THETA_1];

34 m_omega1 = yout[OMEGA_1];

35 m_theta2 = yout[THETA_2];

36 m_omega2 = yout[OMEGA_2];

37 } while ((m_time += m_dt) < newTime);

38 }

39
40 void DoublePendulum::derivs(const double *yin, double *dydx)

41 {

42 // Delta is theta2 - theta1

43 const double delta = yin[THETA_2] - yin[THETA_1];

44
45 // ‘Big-M’ is the total mass of the system, m1 + m2;

46 const double M = m_m1 + m_m2;

47
48 // Denominator expression for omega1

49 double den = M*m_l1 - m_m2*m_l1*cos(delta)*cos(delta);

50
51 // d theta / dt = omega, by definition

52 dydx[THETA_1] = yin[OMEGA_1];

53
54 // Compute omega1
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55 dydx[OMEGA_1] = (m_m2*m_l1*yin[OMEGA_1]*yin[OMEGA_1]*sin(delta)*cos(delta)

56 + m_m2*m_g*sin(yin[THETA_2])*cos(delta)

57 + m_m2*m_l2*yin[OMEGA_2]*yin[OMEGA_2]*sin(delta)

58 - M*m_g*sin(yin[THETA_1])) / den;

59
60 // Again, d theta / dt = omega for theta2 as well

61 dydx[THETA_2] = yin[OMEGA_2];

62
63 // Multiply den by the length ratio of the two bobs

64 den *= m_l2 / m_l1;

65
66 // Compute omega2

67 dydx[OMEGA_2] = (-m_m2*m_l2*yin[OMEGA_2]*yin[OMEGA_2]*sin(delta)*cos(delta)

68 + M*m_g*sin(yin[THETA_1])*cos(delta)

69 - M*m_l1*yin[OMEGA_1]*yin[OMEGA_1]*sin(delta)

70 - M*m_g*sin(yin[THETA_2])) / den;

71 }

doublependulumeuler.h
1 #ifndef DOUBLEPENDULUMEULER_H

2 #define DOUBLEPENDULUMEULER_H

3
4 #include "doublependulum.h"

5
6 class DoublePendulumEuler : public DoublePendulum

7 {

8 public:

9 DoublePendulumEuler(const Pendulum& upper, const Pendulum& lower,

10 double dt=0.05, double g=9.81);

11
12 const char *solverMethod();

13
14 void solveODEs(const double *yin, double *yout);

15 };

16
17 #endif // DOUBLEPENDULUMEULER_H

doublependulumeuler.cpp
1 #include "doublependulumeuler.h"

2
3 DoublePendulumEuler::DoublePendulumEuler(const Pendulum& upper,

4 const Pendulum& lower,

5 double dt, double g):

6 DoublePendulum(upper, lower, dt, g)

7 {
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8 }

9
10 const char *DoublePendulumEuler::solverMethod()

11 {

12 return "Euler";

13 }

14
15 void DoublePendulumEuler::solveODEs(const double *yin, double *yout)

16 {

17 double dydx[NUM_EQNS];

18
19 // Calculate the derivatives of the equations at time + dt

20 derivs(yin, dydx);

21
22 // Update the values of theta and omega for the two bobs

23 yout[THETA_1] = yin[THETA_1] + dydx[THETA_1] * m_dt;

24 yout[OMEGA_1] = yin[OMEGA_1] + dydx[OMEGA_1] * m_dt;

25
26 yout[THETA_2] = yin[THETA_2] + dydx[THETA_2] * m_dt;

27 yout[OMEGA_2] = yin[OMEGA_2] + dydx[OMEGA_2] * m_dt;

28 }

doublependulumrk4.h
1 #ifndef DOUBLEPENDULUMRK4_H

2 #define DOUBLEPENDULUMRK4_H

3
4 #include "doublependulum.h"

5
6 class DoublePendulumRK4 : public DoublePendulum

7 {

8 public:

9 DoublePendulumRK4(const Pendulum& upper, const Pendulum& lower,

10 double dt=0.005, double g=9.81);

11
12 const char *solverMethod();

13
14 void solveODEs(const double *yin, double *yout);

15 };

16
17 #endif // DOUBLEPENDULUMRK4_H

doublependulumrk4.cpp
1 #include "doublependulumrk4.h"

2
3 DoublePendulumRK4::DoublePendulumRK4(const Pendulum& upper,
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4 const Pendulum& lower,

5 double dt, double g) :

6 DoublePendulum(upper, lower, dt, g)

7 {

8 }

9
10 const char *DoublePendulumRK4::solverMethod()

11 {

12 return "Runge Kutta (RK4)";

13 }

14
15 void DoublePendulumRK4::solveODEs(const double *yin, double *yout)

16 {

17 double dydx[NUM_EQNS], dydxt[NUM_EQNS], yt[NUM_EQNS];

18 double k1[NUM_EQNS], k2[NUM_EQNS], k3[NUM_EQNS], k4[NUM_EQNS];

19
20 // First step

21 derivs(yin, dydx);

22 for (int i = 0; i < NUM_EQNS; ++i)

23 {

24 k1[i] = m_dt * dydx[i];

25 yt[i] = yin[i] + 0.5 * k1[i];

26 }

27
28 // Second step

29 derivs(yt, dydxt);

30 for (int i = 0; i < NUM_EQNS; ++i)

31 {

32 k2[i] = m_dt * dydxt[i];

33 yt[i] = yin[i] + 0.5 * k2[i];

34 }

35
36 // Third step

37 derivs(yt, dydxt);

38 for (int i = 0; i < NUM_EQNS; ++i)

39 {

40 k3[i] = m_dt * dydxt[i];

41 yt[i] = yin[i] + k3[i];

42 }

43
44 // Fourth step

45 derivs(yt, dydxt);

46 for (int i = 0; i < NUM_EQNS; ++i)

47 {

48 k4[i] = m_dt * dydxt[i];
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49 yout[i] = yin[i] + k1[i] / 6.0 + k2[i] / 3.0 + k3[i] / 3.0 + k4[i] / 6.0;

50 }

51 }
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