Publications
Home » Pages » Publications
Contents
Journal Papers
- T. Dzanic and F. D. Witherden,
Positivity-preserving entropy-based adaptive filtering for discontinuous spectral element methods.
Journal of Computational Physics, 111501, 2022.
- M. S. Petrov, T. D. Todorov, G. S. Walters, D. M. Williams, and F. D. Witherden,
Enabling four-dimensional conformal hybrid meshing with cubic pyramids.
Numerical Algorithms, 2022.
- T. Dzanic, S. S. Girimaji, and F. D. Witherden,
Partially-Averaged Navier-Stokes Simulations of Turbulence Within a High-Order Flux Reconstruction Framework.
Journal of Computational Physics, 110992, 2022.
- W. Trojak, R. Watson, and F. D. Witherden,
Hyperbolic diffusion in flux reconstruction: Optimisation through kernel fusion within tensor-product elements.
Computer Physics Communications, 273, 108235, 2022.
- S. Akkurt, F. D. Witherden, and P. E. Vincent,
Cache Blocking Strategies Applied to Flux Reconstruction.
Computer Physics Communications, 271, 108193, 2022.
- G. Giangaspero, F. D. Witherden, and P. E. Vincent,
Synthetic Turbulence Generation for High-Order Scale-Resolving Simulations on Unstructured Grids.
AIAA Journal, 60(2), 2022.
- S. Taghizadeh, F. D. Witherden, Y. A. Hassan, and S. S. Girimaji,
Turbulence closure modeling with data-driven techniques: Investigation of generalizable deep neural networks.
Physics of Fluids, 33(11), 115132, 2021.
- F. D. Witherden,
Python at petascale with PyFR or: how I learned to stop worrying and love the snake.
Computing in Science & Engineering, 23(4), 2021, 29–37.
- A. S. Iyer, Y. Abe, B. C. Vermeire, P. Bechlars, R. D. Baier, A. Jameson, F. D. Witherden, and P. E. Vincent,
High-Order Accurate Direct Numerical Simulation of Flow over a MTU-T161 Low Pressure Turbine Blade.
Computers & Fluids, 2021, 104989.
- C. V. Frontin, G. S. Walters, F. D. Witherden, C. W. Lee, D. M. Williams, and D. L. Darmofal,
Foundations of space-time finite element methods: Polytopes, interpolation, and integration.
Applied Numerical Mathematics, 166, 2021, 92–113.
- W. Trojak and F. D. Witherden,
A New Family of Weighted One-Parameter Flux Reconstruction Schemes.
Computers & Fluids, 222, 2021, 104918.
- C. Cox, W. Trojak, T. Dzanic, F. D. Witherden, and A. Jameson,
Accuracy, Stability, and Performance Comparison between the Spectral Difference and Flux Reconstruction Schemes.
Computers & Fluids, 221, 2021, 104922.
- J. Morton, M. J. Kochenderfer, and F. D. Witherden,
Parameter-Conditioned Sequential Generative Modeling of Fluid Flows.
AIAA Journal, 59(3), 2021, 825–841.
- W. Trojak and F. D. Witherden,
Inline vector compression for computational physics.
Computer Physics Communications, 258, 2021, 107562.
- F. D. Witherden and P. E. Vincent,
On nodal point sets for flux reconstruction.
Journal of Computational and Applied Mathematics, 381, 2021, 113014.
- T. S. Fowler, IV, F. D. Witherden, and S. S. Girimaji,
Partially-averaged Navier–Stokes simulations of turbulent flow past a square cylinder: Comparative assessment of statistics and coherent structures at different resolutions.
Physics of Fluids, 32(12), 2020, 125106.
- T. S. Fowler, IV, F. D. Witherden, and S. S. Girimaji,
Pulsating Flow Past a Square Cylinder: Analysis of Force Coefficient Spectra and Vortex-Structure Development.
Journal of Fluids Engineering, 142(12), 2020, 121106.
- S. Taghizadeh, F. D. Witherden, and S. Girimaji,
Turbulence closure modeling with data–driven algorithms: physical compatibility and consistency considerations.
New Journal of Physics, 2020, 093023.
- J. Romero, J. Crabill, J. E. Watkins, F. D. Witherden, and A. Jameson,
ZEFR: A GPU-accelerated high-order solver for compressible viscous flows using the flux reconstruction method.
Computer Physics Communications, 250, 2020, 107169.
- F. D. Witherden and A. Jameson,
Impact of Number Representation for High-Order Implicit Large-Eddy Simulations.
AIAA Journal, 58(1), 2020, 184–197.
- N. A. Loppi, F. D. Witherden, A. Jameson, and P. E. Vincent,
Locally adaptive pseudo-time stepping for high-order Flux Reconstruction.
Journal of Computational Physics, 399, 2019, 108913.
- A. S. Iyer, F. D. Witherden, S. I. Chernyshenko, and P. E. Vincent,
Identifying eigenmodes of averaged small-amplitude perturbations to turbulent channel flow.
Journal of Fluid Mechanics, 875, 2019, 758–780.
- K. T. Carlberg, A. Jameson, M. J. Kochenderfer, J. Morton, L. Peng, and F. D. Witherden,
Recovering missing CFD data for high-order discretizations using deep neural networks and dynamics learning.
Journal of Computational Physics, 395, 2019, 105–124.
- J. A. Crabill, F. D. Witherden, and A. Jameson,
High-order computational fluid dynamics simulations of a spinning golf ball.
Sports Engineering, 22(9), 2019.
- J. A. Crabill, F. D. Witherden, and A. Jameson,
A parallel direct cut algorithm for high-order overset methods with application to a spinning golf ball.
Journal of Computational Physics, 374, 2018, 692–723.
- N. A. Loppi, F. D. Witherden, A. Jameson, and P. E. Vincent,
A High-Order Cross-Platform Incompressible Navier–Stokes Solver
via Artificial Compressibility with Application to a Turbulent Jet.
Computer Physics Communications, 233, 2018, 193–205.
- F. D. Witherden and A. Jameson,
On the spectrum of the Steger–Warming flux‐vector splitting scheme.
International Journal for Numerical Methods in Fluids, 87(12), 2018, 601–606.
- J. Romero, F. D. Witherden, and A. Jameson,
A Direct Flux Reconstruction Scheme for Advection–Diffusion Problems on Triangular Grids.
Journal of Scientific Computing, 73(2–3), 2017, 1115–1144.
- J. S. Park, F. D. Witherden, and P. E. Vincent,
High-Order Implicit Large-Eddy Simulations of Flow over a NACA0021 Aerofoil.
AIAA Journal, 55(7), 2017, 2186-2197.
- B. C. Vermeire, F. D. Witherden, and P. E. Vincent,
On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools.
Journal of Computational Physics, 334, 2017, 497–521.
- F. D. Witherden, J. S. Park, and P. E. Vincent,
An
Analysis of Solution Point Coordinates for Flux Reconstruction Schemes
on Tetrahedral Elements.
Journal of Scientific Computing, 69(2), 2016, 905–920.
- B. D. Wozniak, F. D. Witherden, F. P. Russell, P. E. Vincent, and P.
H. J. Kelly,
GiMMiK—Generating
bespoke matrix multiplication kernels for accelerators: Application to
high-order Computational Fluid Dynamics.
Computer Physics Communications, 202, 2016, 12–22.
- F. D. Witherden, B. C. Vermeire, and P. E. Vincent,
Heterogeneous
computing on mixed unstructured grids with PyFR.
Computers & Fluids, 120, 2015, 173–186.
- P. E. Vincent, A. M. Farrington, F. D. Witherden, and A.
Jameson,
An
extended range of stable-symmetric-conservative Flux Reconstruction
correction functions.
Computer Methods in Applied Mechanics and Engineering, 296, 2015,
248–272.
- F. D. Witherden and P. E. Vincent,
On
the Identification of Symmetric Quadrature Rules for Finite Element
Methods.
Computers & Mathematics with Applications, 69(10), 2015,
1232–1241.
- F. D. Witherden, A. M. Farrington, and P. E. Vincent,
PyFR:
An Open Source Framework for Solving Advection-Diffusion Type Problems
on Streaming Architectures Using the Flux Reconstruction
Approach.
Computer Physics Communications, 185(11), 2014, 3028–3040.
- F. D. Witherden and P. E. Vincent,
An
Analysis of Solution Point Coordinates for Flux Reconstruction Schemes
on Triangular Elements.
Journal of Scientific Computing, 61(2), 2014, 398–423.
Conference Papers
- W. Trojak, T. Dzanic, and F. D. Witherden,
Shock Capturing Methods in High-Order Flux Reconstruction I: Graph Viscosity and Convex Limiting Approaches.
Paper AIAA 2021-0496, AIAA Scitech 2021, 11–15 and 19–21 January 2021.
- D. W. Hartman, T. Dzanic, F. D. Witherden, A. Tropina, and R. B. Miles,
Numerical analysis and prediction of Aero-optical effects.
Paper AIAA 2021-0335, AIAA Scitech 2021, 11–15 and 19–21 January 2021.
- T. Dzanic, K. Shah, and F. D. Witherden,
Fourier Spectrum Discrepancies in Deep Network Generated Images.
NeurIPS 2020, 6–12 December 2020.
- Y. Abe, F. D. Witherden, G. Giangaspero, B. C. Vermeire, A. S. Iyer, and P. E. Vincent,
High-performance Implementation of Inlet Turbulence Generation for GPU-based Parallel Computation.
Advanced Fluid Information 2019, 6–8 November 2019, Sendai, Miyagi, JP.
- J. Morton, F. D. Witherden, and M. J. Kochenderfer,
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control.
IJCAI-19, 10–16 August 2019, Macao, PRC.
- J. Morton, F. D. Witherden, A. Jameson, and M. J. Kochenderfer,
Deep Dynamical Modeling and Control of Unsteady Fluid Flows.
NeurIPS 2018, 2–8 December 2018, Montréal, Quebec, CA.
- F. D. Witherden and A. Jameson,
Future Directions of Computational Fluid Dynamics.
Paper AIAA-2017-3791, 23rd AIAA Computational Fluid Dynamics Conference, 5–9 June 2017, Denver, Colorado, USA.
- P. E. Vincent, F. D. Witherden, B. C. Vermeire, J. S. Park, and A. Iyer,
Towards Green Aviation with Python at Petascale.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC16), 13-18 November 2016, Salt Lake City, Utah, USA.
- M. Klemm, F. D. Witherden, and P. E. Vincent,
Using the pyMIC Offload Module in PyFR.
EuroSciPy 2015, 28–29 August 2015, Cambridge, UK.
- B. C. Vermeire, F. D. Witherden, and P. E. Vincent,
On the
Utility of High-Order Methods for Unstructured Grids: A Comparison
Between PyFR and Industry Standard Tools.
Paper AIAA-2015-2743, 22nd AIAA Computational Fluid Dynamics
Conference, 22-26 June 2015, Dallas, Texas, USA.
- P. E. Vincent, F. D. Witherden, A. M. Farrington, G. Ntemos, B. C. Vermeire, J. S. Park, and A. S. Iyer,
PyFR:
Next-Generation High-Order Computational Fluid Dynamics on Many-Core
Hardware.
Paper AIAA-2015-3050, 22nd AIAA Computational Fluid Dynamics
Conference, 22-26 June 2015, Dallas, Texas, USA.
- G. Mengaldo, D. De Grazia, J. Peiro, A. M. Farrington, F. D. Witherden, P. E. Vincent, and S. J. Sherwin,
A Guide to
the Implementation of Boundary Conditions in Compact High-Order
Methods for Compressible Aerodynamics.
Paper AIAA-2014-2923, 7th AIAA Theoretical Fluid Mechanics Conference,
16-20 June 2014, Atlanta, Georgia, USA.
Book Chapters
- M. Rasquin, K. Hillewaert, A. Colombo, F. Bassi, F. Massa, K. Puri, A. S. Iyer, Y. Abe, F. D. Witherden, B. C. Vermeire, and P. E. Vincent,
Computational Campaign on the MTU T161 Cascade.
In TILDA: Towards Industrial LES/DNS in Aeronautics, edited by C. Hirsch, K. Hillewaert, R. Hartmann, V. Couaillier, J-F. Boussuge, F. Chalot, S. Bosniakov, and W. Haase. Springer, 2021.
- F. Bassi, L. Botti, L. Verzeroli, R. Hartmann, J. Jägersküpper, E. Martin, M. Lorteau, P. E. Vincent, F. D. Witherden, B. C. Vermeire, J. S. Park, A. Iyer, K. Puri, D. Gutzwiller, C. Hirsch, and F. Chalot,
Parallelisation to Several Tens-of-Thousands of Cores.
In TILDA: Towards Industrial LES/DNS in Aeronautics, edited by C. Hirsch, K. Hillewaert, R. Hartmann, V. Couaillier, J-F. Boussuge, F. Chalot, S. Bosniakov, and W. Haase. Springer, 2021.
- F. D. Witherden and A. Jameson,
Aerodynamics.
In Encyclopedia of Computational Mechanics Second Edition, edited by E. Stein, R. de Borst, and T. J. R. Hughes. Wiley, 2017.
- F. D. Witherden, A. Jameson, and D. W. Zingg,
The Design of Steady State Schemes for Computational Aerodynamics.
In Handbook of Numerical Methods for Hyperbolic Problems — Applied and Modern Issues, edited by R. Abgrall and C-W. Shu. Elsevier, 2017.
- F. D. Witherden, P. E. Vincent, and A. Jameson,
High-Order Flux Reconstruction Schemes.
In Handbook of Numerical Methods for Hyperbolic Problems — Basic and Fundamental Issues, edited by R. Abgrall and C-W. Shu. Elsevier, 2016.
- J. Enkovaara, M. Klemm, and F. D. Witherden,
High Performance Python Offloading.
In High Performance Parallelism Pearls Volume 2 pp. 246–269, edited by
J. Jeffers and J. Reinders. Morgan Kaufmann, 2015.
Theses
- F. D. Witherden,
On the Development and Implementation of High-Order Flux
Reconstruction Schemes for Computational Fluid Dynamics.
PhD thesis, September 2015.
Technical Reports
- F. D. Witherden,
Memory
Forensics over the IEEE 1394 Interface.
September 2010.
Conference Presentations
- Inline Vector Compression for Computational Physics.
CEED4AM, 11–12 August 2020.
- Experiences with OpenCL in PyFR: 2014—Present.
IWOCL / SYCLcon 2020, 27–29 April 2020.
- Anatomy of a High-performance FR CFD Solver.
AIAA SciTech 2020, 6–10 January 2020, Orlando, Florida, USA.
- Anatomy of a High-performance FR CFD Solver.
ICFD2019, 6–8 November 2019, Sendai, Miyagi, JP.
- Compression of High-order CFD Solutions using Machine Learning.
SIAM CSE19, 25–1 March 2019, Spokane, Washington, USA.
- On the Impact of Number Representation for High-Order LES.
USNCCM 14, 17–20 July 2017, Montréal, Quebec, CA.
- Predictive CFD, Past, Present, and Future.
PCCFD 2017, 22–24 May 2017, KAUST, SA.
- Towards Greener Aviation with Python at Petascale.
PCCFD 2017, 22–24 May 2017, KAUST, SA.
- PyFR and GiMMiK on Intel KNL: Performance, Scalability, and Applications.
SIAM CSE17, 27–3 March 2017, Atlanta, Georgia, USA.
- Petascale Computational Fluid Dynamics with Python on GPUs.
NVIDIA GPU Technology Conference, 4–7 April 2016, San Jose,
California, USA.
-
PyFR: Heterogeneous Computing on
Mixed Unstructured Grids with Python.
EuroSciPy 2015, 26–29 August 2015, Cambridge, UK.
-
PyFR:
Next Generation Computational Fluid Dynamics on GPU Platforms.
NVIDIA GPU Technology Conference, 17–20 March 2015, San Jose,
California, USA.
-
GiMMiK:
Generating Bespoke Matrix-Multiplication Kernels for NVIDIA
GPUs.
NVIDIA GPU Technology Conference, 17–20 March 2015, San Jose,
California, USA.
-
Heterogeneous Computing with a
Homogeneous Codebase.
SIAM CSE15, 14–18 March 2015, Salt Lake City, Utah, USA.
-
Heterogeneous Computing on Mixed Unstructured Grids with PyFR.
UK Many-Core Developer Conference 2014, 15 December 2014, Cambridge,
UK.
-
PyFR: Technical Challenges of Bringing Next Generation Computational
Fluid Dynamics to GPU Platforms.
NVIDIA GPU Technology Conference, 24–27 March 2014, San Jose,
California, USA.
-
PyFR: An Open Source Python
Framework for High-Order CFD on Many-Core Platforms.
4th International Congress on Computational Engineering and Sciences,
19–24 May 2013, Las Vegas, Nevada, USA.
Invited Presentations
- On the Identification of Symmetric Quadrature Rules for Finite Element Methods.
Texas A&M University Aerospace engineering seminar, 17 September 2020, College Station, Texas, USA.
- High-Order Accurate Computational Fluid Dynamics with Applications to a Spinning Golf Ball.
Department of Mechanical Engineering, Tohoku University, 5 November 2019, Sendai, Miyagi, JP.
-
High-Order Accurate Computational Fluid Dynamics with Applications to a Spinning Golf Ball.
Institute of Fluid Science, Tohoku University, 5 November 2019, Sendai, Miyagi, JP.
-
On the Identification of Symmetric Quadrature Rules for Finite Element Methods.
Lawrence Livermore National Laboratory, 9 October 2019, Livermore, California, USA.
-
On the Identification of Symmetric Quadrature Rules for Finite Element Methods.
Department of Ocean Engineering, Texas A&M University, 25 April 2019, College Station, Texas, USA.
-
Next Generation CFD: LES with High-Order Methods and Machine Learning.
Cambridge University, 24 May 2018, Cambridge, UK.
- Towards Greener Aviation with Python at Petascale.
Department of Mechanical and Aerospace Engineering, George Washington University, 22 February 2018, Washington, D.C., USA.
-
On the Identification of Symmetric Quadrature Rules for Finite Element Methods.
UC Berkeley scientific computing seminar, 1 November 2017, Berkeley, California, USA.
-
PyFR: High-Order Accurate Cross-Platform Petascale Computational Fluid
Dynamics with Python.
Princeton MAE seminar, 28 April 2017, Princeton, New Jersey, USA.
-
On the Identification of Symmetric Quadrature Rules for Finite Element Methods.
Stanford ICME LA/Opt seminar, 13 April 2017, Stanford, California, USA.
-
PyFR: High-Order Accurate Cross-Platform Petascale Computational Fluid
Dynamics with Python.
Stanford CTR Turbulence Tea seminar, 10 March 2017, Stanford, California, USA.
-
PyFR: High-Order Accurate Cross-Platform Petascale Computational Fluid
Dynamics with Python.
Stanford ICME LA/Opt seminar, 9 February 2017, Stanford, California, USA.
-
PyFR:
High-Order Accurate Cross-Platform Petascale Computational Fluid
Dynamics with Python.
AMS seminar series, NASA Ames Research Center, 31 May 2016, Moffett Field, California,
USA.
- Next Generation High-Order CFD with PyFR.
NASA Glenn Research Center, 18 February 2015, Cleveland, Ohio, USA.
Poster Presentations
- T. Dzanic, K. Shah, and F. D. Witherden,
Fourier Spectrum Discrepancies in Deep Network Generated Images.
NeurIPS 2020, 6–12 December 2020.
- N. A. Loppi, F. D. Witherden, and P. E. Vincent,
A High-order Cross-platform Incompressible Navier-Stokes Solver via Artificial Compressibility with Application to Submarine Hydrodynamics.
SIAM CSE19, 25–1 March 2019, Spokane, Washington, USA.
- J. Morton, F. D. Witherden, A. Jameson, and M. J. Kochenderfer,
Deep Dynamical Modeling and Control of Unsteady Fluid Flows.
NeurIPS 2018, 2–8 December 2018, Montréal, Quebec, CA.
- P. E. Vincent, A. Iyer, F. D. Witherden, B. C. Vermeire, Y. Abe, R-D. Baier, and A. Jameson,
High-Order Accurate Scale-Resolving Simulations of Low-Pressure Turbine Linear Cascades using Python at Petascale.
2018 OLCF user meeting, 15–17 May 2018, Oak Ridge, Tennessee, USA.
- J. Crabill, D. Manosalvas–Kjono, J. Romero, J. Watkins, F. D. Witherden, and A. Jameson,
Recent Work in the Aerospace Computing Lab.
PCCFD 2017, 22–24 May 2017, KAUST, SA.
- J. Crabill, D. Manosalvas–Kjono, J. Romero, J. Watkins, F. D. Witherden, and A. Jameson,
Recent Work in the Aerospace Computing Lab.
Stanford AA affiliates day, 19 April 2017, Stanford, California, USA.
- F. D. Witherden, B. D. Wozniak, F. P. Russell, P. E. Vincent, and P.
H. J. Kelly,
Beating cuBLAS: Automatically Generating Bespoke Matrix Multiplication
Kernels Using GiMMiK.
SC15, 15–20 November 2015, Austin, Texas, USA.
- F. D. Witherden, B. C. Vermeire, and P. E. Vincent,
PyFR: An Open Source Python Framework for High-Order CFD on
Heterogeneous Platforms.
SC14, 16–21 November 2014, New Orleans, Louisiana, USA.
- F. D. Witherden, A. M. Farrington, and P. E. Vincent,
PyFR: An Open Source Python Framework
for Solving Advection-Diffusion Type Problems on Streaming
Architectures.
UK Manycore Developer Conference 2013, 16–17 December 2013, Oxford,
UK.
- F. D. Witherden, A. M. Farrington, and P. E. Vincent,
PyFR: An Open Source Python
Framework for High-Order CFD on Many-Core Platforms.
4th International Congress on Computational Engineering and Sciences,
19–24 May 2013, Las Vegas, Nevada, USA.